Startseite Removal of metaldehyde pesticide from aquatic media using modified cellulose obtained from Populus nigra plant, as potential adsorbent
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Removal of metaldehyde pesticide from aquatic media using modified cellulose obtained from Populus nigra plant, as potential adsorbent

  • Gulab Said , Waqas Ahmad , Muhammad Tariq Jan , Muhammad Zahoor ORCID logo EMAIL logo , Azmat Ullah , Riaz Ullah , Muhammad Naveed Umar , Zafar Iqbal und Haroon ur Rashid ORCID logo
Veröffentlicht/Copyright: 20. August 2024

Abstract

In this study modified cellulose based adsorbent was prepared from Populus nigra plant, and used for elimination of metaldehyde (herbicide) from model waste water. The adsorbent was characterized through analytical technique such as FTIR, SEM, EDX and XRD for structural adsorption related parameters. The results of SEM showed the suitability of the material to be used as adsorbent and FTIR showed successful crosslinking of polyvinyl alcohol into cellulose structure. In order to get maximum reclamation benefits from adsorbent it was subjected to a number of tests evaluating the effect of metaldehyde concentration, sorbent dose, contact time, initial pH of solution and temperature. The maximum removal of 70 % was achieved under conditions of 80 mg/L metaldehyde concentration, 60 min contact time, pH of 8, 0.08 g sorbent dosage, and room temperature (25 °C). The Langmuir isotherm model with correlation coefficients of 0.9855 and maximum adsorption capacity recorded was 8.32 mg/g, while excellent agreement was shown by kinetic data with pseudo second order kinetic model with R 2 = 0.9876. Thermodynamic study indicated enthalpy change (ΔH° = −129 kJ/mol) to be negative, entropy change (ΔS° = 161.7 j/mol) positive, and the Gibbs free energy (ΔG) as negative showing that the process to be exothermic and feasible/spontaneous with an increase of randomness at solid liquid interface. The finding indicated that modified cellulose could be used as an efficient adsorbent for removal of metaldehyde from model waste water. However, further validation with other pollutants will be helpful in checking reproducibility of the present findings.


Corresponding author: Muhammad Zahoor, Department of Biochemistry, University of Malakand, Chakdara, Dir Lower, Pakistan, e-mail:

Funding source: King Saud University Riyadh Saudi Arabia

Award Identifier / Grant number: Researchers Supporting Project Number (RSPD2024R706)

  1. Research funding: Authors wish to thanks Researchers Supporting Project Number (RSPD2024R706) at King Saud University Riyadh Saudi Arabia for financial support.

References

1. Singh, R. K.; Philip, L.; Ramanujam, S. Removal of 2,4-Dichlorophenoxyacetic Acid in Aqueous Solution by Pulsed Corona Discharge Treatment: Effect of Different Water Constituents, Degradation Pathway and Toxicity Assay. Chemosphere 2017, 184, 207–214. https://doi.org/10.1016/j.chemosphere.2017.05.134.Suche in Google Scholar PubMed

2. Nejati, K.; Davary, S.; Saati, M. Study of 2,4-Dichlorophenoxyacetic Acid (2,4-D) Removal by Cu-Fe-Layered Double Hydroxide from Aqueous Solution. Appl. Surf. Sci. 2013, 280, 67–73. https://doi.org/10.1016/j.apsusc.2013.04.086.Suche in Google Scholar

3. Qamar, M.; Aslam, M.; Rehan, Z.; Soomro, M.; Basahi, J. M.; Ismail, I. M.; Hameed, A. The Effect of Fe3+ Based Visible Light Receptive Interfacial Phases on the Photocatalytic Activity of Zno for the Removal Of 2,4-Dichlorophenoxy Acetic Acid in Natural Sunlight Exposure. Sep. Purif. Technol. 2017, 172, 512–528; https://doi.org/10.1016/j.seppur.2016.08.030.Suche in Google Scholar

4. Risco, C. Sep. Purif. Technol. 2015, 156, 234.Suche in Google Scholar

5. Jaafarzadeh, N.; Ghanbari, F.; Ahmadi, M. Catalytic Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D) by Nano-Fe2o3 Activated Peroxymonosulfate: Influential Factors and Mechanism Determination. Chemosphere 2017, 169, 568–576. https://doi.org/10.1016/j.chemosphere.2016.11.038.Suche in Google Scholar PubMed

6. Bradu, C.; Magureanu, C. M.; Parvulescu, V. Degradation of the Chlorophenoxyacetic Herbicide 2,4-D by Plasma-Ozonation System. J. Hazard. Mater. 2017, 336, 52–56. https://doi.org/10.1016/j.jhazmat.2017.04.050.Suche in Google Scholar PubMed

7. Zhao, R. J. Colloid Interface Sci. 2017, 487, 297.10.1016/j.jcis.2016.10.057Suche in Google Scholar PubMed

8. Le, T. D.; Nguyen, T. H.; Nguyen, D. T.; Vu, D. T.; Hoang, H.; Le, T. S.; Pham, T. D. Highly Efficient Removal of 2,4,5-Trichlorophenoxyacetic Acid by Adsorption and Photocatalysis using Nanomaterials with Surface Coating by the Cationic Surfactant. Langmuir 2024, 40, 13573–13582; https://doi.org/10.1021/acs.langmuir.4c01087.Suche in Google Scholar PubMed

9. Méndez-Díaz, J.; Prados-Joya, G.; Rivera-Utrilla, J.; Leyva-Ramos, R.; Sánchez-Polo, M.; Ferro-García, M. A.; Medellín-Castillo, N. A. Kinetic Study of the Adsorption of Nitroimidazole Antibiotics on Activated Carbons in Aqueous Phase. J. Colloid Interface Sci. 2010, 345, 481–490; https://doi.org/10.1016/j.jcis.2010.01.089.Suche in Google Scholar PubMed

10. Guo, Z. Chem. Eng. J. 2016, 306, 99.10.1016/j.cej.2016.07.048Suche in Google Scholar

11. Kearns, J. P.; Wellborn, L.; Summers, R.; Knappe, D. 2,4-D Adsorption to Biochars: Effect of Preparation Conditions on Equilibrium Adsorption Capacity and Comparison with Commercial Activated Carbon Literature Data. Water Res. 2014, 62, 20–28. https://doi.org/10.1016/j.watres.2014.05.023.Suche in Google Scholar PubMed

12. Carvalho, F. P. Environ. Sci. Policy 2006, 9, 685.10.1016/j.envsci.2006.08.002Suche in Google Scholar

13. Wang, Z.; Fernández-Blanco, Z.; Chen, J.; Veiga, M. C.; Kennes, C. Effect of Electron Acceptors on Product Selectivity and Carbon Flux in Carbon Chain Elongation with Megasphaera Hexanoica. Sci. Total Environ. 2024, 912, 169509. https://doi.org/10.1016/j.scitotenv.2023.169509.Suche in Google Scholar PubMed

14. Manasfi, T. Chapter 4: Ozonation in drinking water treatment: an overview of general and practical aspects, mechanisms, kinetics, and byproduct formation. Comprehensive Analytical Chemistry, Elsevier 2021, 92, 85–116; https://doi.org/10.1016/bs.coac.2021.02.003.Suche in Google Scholar

15. Nguyen, L. V.; Busquets, R.; Ray, S.; Cundy, A. B. Graphene Oxide-Based Degradation of Metaldehyde: Effective Oxidation Through a Modified Fenton’s Process. Chem. Eng. J. 2017, 307, 159–167. https://doi.org/10.1016/j.cej.2016.08.052.Suche in Google Scholar

16. Autin, O.; Hart, J.; Jarvis, P.; MacAdam, J.; Parsons, S. A.; Jefferson, B. Comparison of UV/H2O2 AND UV/Tio2 for the Degradation of Metaldehyde: Kinetics and the Impact of Background Organics. Water Res. 2012, 46, 5655–5662. https://doi.org/10.1016/j.watres.2012.07.057.Suche in Google Scholar PubMed

17. Nabeerasool, M.; Campen, A.; Polya, D.; Brown, N.; van Dongen, B. Removal of Metaldehyde from Water Using a Novel Coupled Adsorption and Electrochemical Destruction Technique. Water 2015, 7, 3057–3071. https://doi.org/10.3390/w7063057.Suche in Google Scholar

18. Asfaram, A.; Ghaedi, M.; Dashtian, K.; Ghezelbash, G. R. Preparation and Characterization of Mn0.4Zn0.6Fe2O4 Nanoparticles Supported on Dead Cells of Yarrowia lipolytica as a Novel and Efficient Adsorbent/Biosorbent Composite for the Removal of Azo Food Dyes: Central Composite Design Optimization Study. Sustain. Chem. Eng. 2018, 6, 4549–4563. https://doi.org/10.1021/acssuschemeng.7b03205.Suche in Google Scholar

19. Mazaheri, H.; Ghaedi, M.; Ahmadi Azqhandi, M. H.; Asfaram, A. Application of Machine/Statistical Learning, Artificial Intelligence and Statistical Experimental Design for the Modeling and Optimization of Methylene Blue and Cd(Ii) Removal from a Binary Aqueous Solution by Natural Walnut Carbon. Phys. Chem. Chem. Phys. 2017, 19, 11299–11317. https://doi.org/10.1039/c6cp08437k.Suche in Google Scholar PubMed

20. Ansari, F.; Ghaedi, M.; Taghdiri, M.; Asfaram, A. Application Of ZnO Nanorods Loaded on Activated Carbon for Ultrasonic Assisted Dyes Removal: Experimental Design and Derivative Spectrophotometry Method. Ultrason. Sonochem. 2016, 33, 197–209. https://doi.org/10.1016/j.ultsonch.2016.05.004.Suche in Google Scholar PubMed

21. Le, T. D.; Nguyen, D. T.; Nguyen, Q. L.; Duong, V. D.; Doan, T. H. Y.; Nadda, A. K.; Sharma, S.; Le, T. S.; Pham, T. D. Adsorptive Removal of Dichlorophenoxyacetic Acid (2,4-D) Using Novel Nanoparticles based on Cationic Surfactant-Coated Titania Nanoparticles. Environ. Sci. Pollut. Res. 2023, 30, 42367–42377; https://doi.org/10.1007/s11356-023-25312-1.Suche in Google Scholar PubMed

22. Mao, H.; Wang, S.; Lin, J. Y.; Wang, Z.; Ren, J. Modification of a Magnetic Carbon Composite for Ciprofloxacin Adsorption. J. Environ. Sci. 2016, 49, 179–188. https://doi.org/10.1016/j.jes.2016.05.048.Suche in Google Scholar PubMed

23. Wang, J. Sep. Purif. Technol. 2017, 188, 24.Suche in Google Scholar

24. Hong, G.; Li, X.; Shen, L.; Wang, M.; Wang, C.; Yu, X.; Wang, X. High Recovery of Lead Ions from Aminated Polyacrylonitrile Nanofibrous Affinity Membranes with Micro/Nano Structure. J. Hazard. Mater. 2015, 295, 161–169; https://doi.org/10.1016/j.jhazmat.2015.04.020.Suche in Google Scholar PubMed

25. Fard, M. A. Physicochem. Eng. Asp. 2017, 531, 189.10.1016/j.colsurfa.2017.08.008Suche in Google Scholar

26. Connell, D. W.; Birkinshaw, C.; O’Dwyer, T. F. Bioresour. Technol. 2008, 99, 6709.10.1016/j.biortech.2008.01.036Suche in Google Scholar PubMed

27. Naphat, U.; Selorm, T.; Prakit, S.; Somwang, K.; Puangsin, B.; Srichola, P. Development of Nanocomposite Film Comprising of Polyvinyl Alcohol (PVA) Incorporated with Bacterial Cellulose Nanocrystals and Magnetite Nanoparticles. Polymers 2021, 13, 1778. https://doi.org/10.3390/polym13111778.Suche in Google Scholar PubMed PubMed Central

28. Nasiri, M.; Ahmadzadeh, H.; Amiri, A. Organophosphorus Pesticides Extraction with Polyvinyl Alcohol Coated Magnetic Graphene Oxide Particles and Analysis by Gas Chromatography-Mass Spectrometry: Application to Apple Juice and Environmental Water. Talanta 2021, 227, 122078. https://doi.org/10.1016/j.talanta.2020.122078.Suche in Google Scholar PubMed

29. Malkoc, E.; Nuhoglu, Y. Determination of Kinetic and Equilibrium Parameters of the Batch Adsorption of Cr(VI) onto Waste Acorn of Quercus Ithaburensis. Chem. Eng. Process.: Process Intensif. 2007, 46, 1020–1029. https://doi.org/10.1016/j.cep.2007.05.007.Suche in Google Scholar

30. Isotherms, T. A. Life Sci. J. 2010, 7, 31.Suche in Google Scholar

31. Mansur, H. S.; Sadahira, C. M.; Souza, A. N.; Mansur, A. A. Ftir Spectroscopy Characterization of Poly (Vinyl Alcohol) Hydrogel with Different Hydrolysis Degree and Chemically Crosslinked with Glutaraldehyde. Mater. Sci. Eng. 2008, 28, 539–548. https://doi.org/10.1016/j.msec.2007.10.088.Suche in Google Scholar

32. He, T.; Tong, G.; Li, P.; Miao, C.; Zhang, X.; Xu, X. Effect of Nano Precipitated Calcium Carbonate on the Properties of Hydrogels Prepared with Acrylamide, Starch, and Tempo-Oxidized Nanocellulose. Bioresources 2022, 17, 5079–5094. https://doi.org/10.15376/biores.17.3.5079-5094.Suche in Google Scholar

33. Shahinur, S.; Hasan, M.; Ahsan, Q.; Sultana, N.; Ahmed, Z.; Haider, J. Effect of Rot-Fire-and Water-Retardant Treatments on Jute Fiber and Their Associated Thermoplastic Composites: A Study by FTIR. Polymers 2021, 13, 2571. https://doi.org/10.3390/polym13152571.Suche in Google Scholar PubMed PubMed Central

34. Riseh, R. S.; Vazvani, M. G.; Hassanisaadi, M.; Thakur, V. K. Agricultural wastes: A practical and potential source for the isolation and preparation of cellulose and application in agriculture and different industries. Industrial Crops and Products 2024, 208, 117904; https://doi.org/10.1016/j.indcrop.2023.117904.Suche in Google Scholar

35. Pota, G.; Sapienza Salerno, A.; Costantini, A.; Silvestri, B.; Passaro, J.; Califano, V. Co-immobilization of Cellulase and β-Glucosidase into Mesoporous Silica Nanoparticles for the Hydrolysis of Cellulose Extracted from Eriobotrya japonica Leaves. Langmuir 2022, 38, 5481–5493. https://doi.org/10.1021/acs.langmuir.2c00053.Suche in Google Scholar PubMed PubMed Central

36. Li, P.; Yang, C.; Xu, X.; Miao, C.; He, T.; Jiang, B.; Wu, W. Preparation of Bio-Based Aerogel and Its Adsorption Properties for Organic Dyes. Gels 2022, 8, 755; https://doi.org/10.3390/gels8110755.Suche in Google Scholar PubMed PubMed Central

37. Chong, K. Y.; Chia, C. H.; Zakaria, S.; Sajab, M. S.; Chook, S. W.; Khiew, P. S. CaCO3-Decorated Cellulose Aerogel for Removal of Congo Red from Aqueous Solution. Cellulose 2015, 22, 2683–2691. https://doi.org/10.1007/s10570-015-0675-2.Suche in Google Scholar

38. Wahab, M.; Zahoor, M.; Salman, S. M.; Naz, S. Effective Removal of Tetracycline from Water by Batch Method using Activated Carbon, Magnetic Carbon Nanocomposite, and Membrane Hybrid Technology. Z. Phys. Chem. 2021, 235, 1323–1354. https://doi.org/10.1515/zpch-2020-1698.Suche in Google Scholar

39. LeVan, M. D.; Vermeulen, T. Binary Langmuir and Freundlich Isotherms For Ideal Adsorbed Solutions. J. Phys. Chem. 1981, 85, 3247–3250. https://doi.org/10.1021/j150622a009.Suche in Google Scholar

40. Freundlich, H. Z. Phys. Chem. 1907, 57, 385.10.1515/zpch-1907-5723Suche in Google Scholar

41. Park, J. C.; Joo, J. B.; Yi, J. Adsorption of Acid Dyes using Polyelectrolyte Impregnated Mesoporous Silica. Korean J. Chem. Eng. 2005, 22, 276–280. https://doi.org/10.1007/bf02701497.Suche in Google Scholar

42. Wahab, M.; Zahoor, M.; Muhammad Salman, S.; Kamran, A. W.; Naz, S.; Burlakovs, J.; Kallistova, A.; Pimenov, N.; Zekker, I. Adsorption-Membrane Hybrid Approach for the Removal of Azithromycin from Water: An Attempt to Minimize Drug Resistance Problem. Water 2021, 13, 1969; https://doi.org/10.3390/w13141969.Suche in Google Scholar

43. Panagiotis Zalmas, L.; Zhao, X.; Graham, A. L.; Fisher, R.; Reilly, C.; Coutts, A. S.; La Thangue, N. B. DNA‐Damage Response Control of E2F7 and E2F8. EMBO Rep. 2008, 9, 252–9; https://doi.org/10.1038/sj.embor.7401158.Suche in Google Scholar PubMed PubMed Central

44. Podder, M.; Majumder, C. Studies on the Removal of As(III) And As(V) through their Adsorption onto Granular Activated Carbon/MnFe2O4 Composite: Isotherm Studies and Error Analysis. Compos. Interfaces 2016, 23, 327–372. https://doi.org/10.1080/09276440.2016.1137715.Suche in Google Scholar

45. Lagergren, S. K. Handingarl 1898, 24, 1.Suche in Google Scholar

46. Ho, Y. S.; Ng, J.; McKay, G. Sep. Purif. Methods 2000, 29, 189–232. https://doi.org/10.1081/spm-100100009.Suche in Google Scholar

47. Riahi, K.; Chaabane, S.; Thayer, B. B. A Kinetic Modeling Study of Phosphate Adsorption onto Phoenix Dactylifera l. Date Palm Fibers in Batch Mode. J. Saudi Chem. Soc. 2017, 21, S143–S152. https://doi.org/10.1016/j.jscs.2013.11.007.Suche in Google Scholar

48. Cheung, W.; Ng, J.; McKay, G. Kinetic Analysis of the Sorption of Copper(II) Ions on Chitosan. Int. Res. Projects 2003, 78, 562–571. https://doi.org/10.1002/jctb.836.Suche in Google Scholar

49. Srivastava, S.; Tyagi, R.; Pant, N. Adsorption of Heavy Metal Ions on Carbonaceous Material Developed from the Waste Slurry Generated in Local Fertilizer Plants. Water Res. 1989, 23, 1161–1165. https://doi.org/10.1016/0043-1354(89)90160-7.Suche in Google Scholar

50. Tassone, L.; Notarangelo, L. D.; Bonomi, V.; Savoldi, G.; Sensi, A.; Soresina, A.; Smith, C.; Porta, F.; Plebani, L.; Notarangelo; Badolato, R. Clinical and Genetic Diagnosis of Warts, Hypogammaglobulinemia, Infections, and Myelokathexis Syndrome in 10 Patients. J. Allergy Clin. Immunol. 2009, 123, 1170–1173.e3; https://doi.org/10.1016/j.jaci.2008.12.1133.Suche in Google Scholar PubMed

51. Shaikh, H. M.; Pandare, K. V.; Nair, G.; Varma, A. J. Utilization of Sugarcane Bagasse Cellulose for Producing Cellulose Acetates: Novel Use of Residual Hemicellulose as Plasticizer. Carbohydr. Polym. 2009, 76, 23–29. https://doi.org/10.1016/j.carbpol.2008.09.014.Suche in Google Scholar

52. Ho, Y. S. Removal of Copper Ions from Aqueous Solution by Tree Fern. Water Res. 2003, 37, 2323–2330. https://doi.org/10.1016/s0043-1354(03)00002-2.Suche in Google Scholar PubMed

53. Selen, V.; Güler, Ö.; Özer, D.; Evin, E. Synthesized Multi-Walled Carbon Nanotubes as a Potential Adsorbent for the Removal of Methylene Blue Dye: Kinetics, Isotherms, and Thermodynamics. Desalin. Water Treat. 2016, 57, 8826–8838. https://doi.org/10.1080/19443994.2015.1025851.Suche in Google Scholar

54. Kara, S.; Aydiner, C.; Demirbas, E.; Kobya, M.; Dizge, N. Modeling the Effects of Adsorbent Dose and Particle Size on the Adsorption of Reactive Textile Dyes by Fly Ash. Desalination 2007, 212, 282–293. https://doi.org/10.1016/j.desal.2006.09.022.Suche in Google Scholar

55. Falcoz, Q.; Gauthier, D.; Abanades, S.; Flamant, G.; Patisson, F. Kinetic Rate Laws of Cd, Pb, and Zn Vaporization during Municipal Solid Waste Incineration. Environ. Sci. Technol. 2009, 43, 2184–2189. https://doi.org/10.1021/es803102x.Suche in Google Scholar PubMed

56. Lima, E. C. J. Mol. Liq. 2019, 273, 425.10.1016/j.molliq.2018.10.048Suche in Google Scholar

57. Suciu, N. A.; Capri, E. Adsorption of Chlorpyrifos, Penconazole and Metalaxyl from Aqueous Solution by Modified Clays. J. Environ. Sci. Health 2009, 44, 525–532. https://doi.org/10.1080/03601230902997543.Suche in Google Scholar PubMed

58. Chang, C. F.; Hsu, K. E.; Lee, S. C.; Höll, W. Adsorptive Removal of the Pesticide Methomyl using Hypercrosslinked Polymers. J. Hazard. Mater. 2008, 155, 295–304. https://doi.org/10.1016/j.jhazmat.2007.11.057.Suche in Google Scholar PubMed

59. Kyriakopoulos, G. G.; Hourdakis, A. A.; Doulia, D. D. Adsorption of Pesticides on Resins. J. Environ. Sci. Health 2003, 38, 157–168. https://doi.org/10.1081/pfc-120018446.Suche in Google Scholar PubMed

60. Gupta, V. K.; Ali, I. Removal of DDD and DDE From Wastewater using Bagasse Fly Ash, A Sugar Industry Waste. Water Res. 2001, 35, 33–40. https://doi.org/10.1016/s0043-1354(00)00232-3.Suche in Google Scholar PubMed

61. Lemić, J.; Kovacević, D.; Tomasević-Canović, M.; Kovacević, D.; Stanić, T.; Pfend, R. Removal of Atrazine, Lindane and Diazinone from Water by Organo-Zeolites. Water Res. 2006, 40, 1079–1085. https://doi.org/10.1016/j.watres.2006.01.001.Suche in Google Scholar PubMed

62. El Bakouri, H.; Usero, J.; Morillo, J.; Rojas, R.; Ouassini, A. Drin Pesticides Removal from Aqueous Solutions using Acid-Treated Date Stones. Bioresour. Technol. 2009, 100, 2676–2684. https://doi.org/10.1016/j.biortech.2008.12.051.Suche in Google Scholar PubMed

63. Akhtar, M.; Iqbal, S.; Bhanger, M.; Moazzam, M. Utilization of Organic By-Products for the Removal of Organophosphorous Pesticide from Aqueous Media. J. Hazard. Mater. 2009, 162, 703–707. https://doi.org/10.1016/j.jhazmat.2008.05.084.Suche in Google Scholar PubMed

Published Online: 2024-08-20
Published in Print: 2024-12-17

© 2024 IUPAC & De Gruyter

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0234/html
Button zum nach oben scrollen