Home New half sandwich complexes of ruthenium(ii) and iridium(iii). Study of their toxicity against Hela
Article
Licensed
Unlicensed Requires Authentication

New half sandwich complexes of ruthenium(ii) and iridium(iii). Study of their toxicity against Hela

  • Alfonso Canales-Martínez , Rosa M. Pérez-Pastor and Gabriel García ORCID logo EMAIL logo
Published/Copyright: July 12, 2024

Abstract

In this work, we describe the synthesis and characterisation of the starting materials [Cp*IrCl2]2 and four new ruthenium(II) and iridium(III) complexes half sandwich, contain the fragments [(p-cymene)Ru]2+ and [Cp*Ir]2+; (Cp* = CpMe4Et) of stoichiometry: [Cp*IrCl2(2-aminopyridine)] (I), [Cp*IrCl2(4-aminopyridine)] (II), [Cp*IrCl2(adenine)] (III) and [(p-cymene)RuCl2(adenine)] (IV). The new compounds have been characterised by C, H, and N elemental analysis; infrared and 1H NMR spectroscopy with 1H–1H COSY, ESI/TOF mass spectrometry and thermogravimetry. A study of the cytotoxicity of these compounds against the Hela cell line was carried out, with results indicating a low activity.


Corresponding author: Gabriel García, Departamento de Química Inorgánica, Facultad de Química, Campus Regional de Excelencia, “Campus Mare Nostrum”, Universidad de Murcia, 30071, Murcia, Spain, e-mail:

Award Identifier / Grant number: 10.13039/501100011033

References

[1] M. Zaki, E. Hairat, S. Aazam. RSC Adv. 9, 3239 (2019), https://doi.org/10.1039/c8ra07926a.Search in Google Scholar PubMed PubMed Central

[2] G. Jaouen. Bioorganometallics, Wiley VCH, Weinheim (Germany) (2006).10.1002/3527607692Search in Google Scholar

[3] G. Gaouen, P. Dyson. Comprehensive Organometallic Chemistry III 12, R. H. Crabtree, D. M. P. Mingos (Eds.), p. 445, Elsevier Ltd, Oxford (2007).10.1016/B0-08-045047-4/00173-4Search in Google Scholar

[4] C. G. Hastinger, N. Metzler-Nolte, PJ Dyson. Organometallics 31, 5677 (2012), https://doi.org/10.1021/om300373t.Search in Google Scholar

[5] C. S. Allardyce, A. Dorcier, C. Scolaro, P. J. Dyson. Appl. Organomet. Chem. 19, 1 (2005), https://doi.org/10.1002/aoc.725.Search in Google Scholar

[6] (a) B. M. Trost, F. D. Toste, A. B. Pinkerton. Chem. Rev. 101, 2067 (2001).(b) T. Touge, T. Hakamata, H. Nara, T. Kobayashi, T. Sayo, Y. Saito, T. Kayaki, Y. Ikariya. J. Am. Chem. Soc. 133, 14960 (2011).(c) M. Ito, T. Ootsuka, R. Watari, A. Shiibashi, A. Himizu, Y. Ikariya. J. Am. Chem. Soc. 133, 4240 (2011), https://doi.org/10.1021/ja1117254.Search in Google Scholar PubMed

[7] (a) B. M. Alagesan, P. Sathyadevi, P. Krisnamoorthy, N. S. P. Buvanesh, N. Dharmaraj. Dalton Trans. 43, 15829 (2014), https://doi.org/10.1039/c4dt01032a.(b) P. Starha. Coord. Chem. Rev. 431, 213690 (2021), https://doi.org/10.1016/j.ccr.2020.213690.(c) W. Su, Y. Li, P. Li. Mini. Rev. Med. Chem. 18, 184 (2018), https://doi.org/10.2174/1389557517666170510113453.Search in Google Scholar PubMed

[8] R. M. Rademaker-Lakhai, D. Van Den Borgard, D. Pluim, J. H. Bejinem, M. Schellens. Cli. Cancer. Res. 10, 3717 (2004), https://doi.org/10.1158/1078-0432.ccr-03-0746.Search in Google Scholar

[9] C. G. Hartinger, M. A. Jakuper, S. Zorbas-Seifried, M. Groessl, A. Egger, W. Berger, P. J. Dyson, B. J. Keppler. Chem. Biodivers. 5, 2140 (2008).10.1002/cbdv.200890195Search in Google Scholar PubMed

[10] S. Monro, K. H. Colon, H. Yin, J. Roque, P. J Konds, S. Gujar, R. P. Thummel, L. Llige, C. G. Cameron, S. A. McFarland. Chem. Rev. 119, 797 (2019).10.1021/acs.chemrev.8b00211Search in Google Scholar PubMed PubMed Central

[11] (a) L. Trynda Lemiesz. Acta Biochim. 52, 199 (2004).(b) A. Bergamo, G. Stocco, C. Casassa, M. Cocchettio, E. Alessio, B. Serlj, S. Zorzet, G. Sava. Int. J. Oncol. 24, 373 (2004).10.18388/abp.2004_3611Search in Google Scholar

[12] C. Teixeira-Guedes, A. R. Brás, R.G. Teixeira, A. Valente, A. Preto. Pharmaceutics 14, 1293 (2022), https://doi.org/10.3390/pharmaceutics14061293.Search in Google Scholar PubMed PubMed Central

[13] F. Wang, A. Habtemariam, E. P. van der Geer, R. Fernández, M. Melchart, R. J. Deeth, R. Aird, S. Guichard, F. P. Fabbiani, P. Lozano-Casal, I. D. H. Oswald, D. I. Jodrell, S. Parsons, P. J. Sadle. Proc. Natl. Acad. Sci. U. S. A. 102, 18269 (2005), https://doi.org/10.1073/pnas.0505798102.Search in Google Scholar PubMed PubMed Central

[14] R. Dua, S. Shrivastava, S. K. Sonwane, S. K. Srivastava. Adv. Biol. Res. 5, 120 (2011).Search in Google Scholar

[15] G. A. Pereira, A. C. Massabni, E. E. Castellani, L. A. S. Costa, C. Q. F. Leite, F. R. Pavan. Polyhedron 38, 291 (2012), https://doi.org/10.1016/j.poly.2012.03.016.Search in Google Scholar

[16] (a) C. Fajkusova, M. Pesko, S. Keltosova, J. Guo, Z. Oktabec, M. Vejsova, P. Kollar, A. Koffey, J. Csollej, K. Kralova, J. Jampliek. Bioorg. Med. Chem. 20, 7059 (2012), https://doi.org/10.1016/j.bmc.2012.10.007.(b) R. Chikhale, S. Menghani, R. Babu, R. Bansode, S. Bhargavi, N. Karodia, M. V. Rajasekharan, A. Paradkar, P. Khedekar. Eur. J. Med. Chem. 96, 30 (2015), https://doi.org/10.1016/j.ejmech.2015.04.011.(c) A. K. Ghosh, K. V. Rao, P. R Nyalapatla, H. L Osswald, C. D. Martyr, M. Aoki, H. Hayashi, J. Agniswamy, Y. F. Wang, H. Bulut, D. Das, I. T. Weber, H. Mitsuya. J. Med. Chem. 60, 4267 (2017), https://doi.org/10.1021/acs.jmedchem.7b00172.Search in Google Scholar PubMed

[17] K. Serdons, T. Verduyckt, D. Vanderghinste, J. Cleynhens, P. Borghgraef, P. Vermaelen Bioorg. Med. Chem. Lett. 17, 602 (2009).Search in Google Scholar

[18] K. Máliková, L. Masaryk, P. Štarha. Inorganics 9, 26 (2021), https://doi.org/10.3390/inorganics9040026.Search in Google Scholar

[19] T. Yang, M. Zhu, M. Jiang, F. Yang, Z. Zhang. Front. Pharmacol 13, 1025544 (2022), https://doi.org/10.3389/fphar.2022.1025544.Search in Google Scholar PubMed PubMed Central

[20] V. K. Mishra, M. Mishra, W. Kashaw, S.K. Kashaw. Bioorg. Med. Chem. 25, 1949 (2017), https://doi.org/10.1016/j.bmc.2017.02.025.Search in Google Scholar PubMed

[21] D. Munirajasekhar, M. Himaja, S. V. Mali. J. Heterocyclic Chem. 15, 459 (2014).Search in Google Scholar

[22] K. Cyprych, L. Sznitko, O. Morawski, A. Miniewicz, I. Rau, J. MysliwieC. J. Phys. D Appl. Phys. 48, 195101 (2015), https://doi.org/10.1088/0022-3727/48/19/195101.Search in Google Scholar

[23] S. Hua, S. Zhang, Y. Hua, Q. Tao, A. Wu. Dyes Pigments 96, 509 (2013).10.1016/j.dyepig.2012.09.019Search in Google Scholar

[24] P. Patel, D. Gor, P.S. Patel. Chem. Sci. Trans. 2, 1089 (2013).10.7598/cst2013.299Search in Google Scholar

[25] L. Guo, P. Li, J. Li, Y. Gong, X. Li, Y. Liu, K. Yu, Z. Liu. Inorg. Chem. 62, 15118 (2023).10.1021/acs.inorgchem.3c02118Search in Google Scholar PubMed

[26] R. Křikavová, M. Romanovová, Z. Jendželovská, M. Majerník, L. Masaryk, P. Zoufalý, D. Milde, J. Moncol, R. Herchel, R. Jendželovský, I. Nemec. Dalton Trans. 52, 12717 (2023), https://doi.org/10.1039/d3dt01696j.Search in Google Scholar PubMed

[27] X. Hu, L. Guo, M. Liu, Q. Zhang, Y. Gong, M. Sun, S. Feng, X. X. Y. Liu, Z. Liu. Inorg. Chem. 61, 20008 (2022), https://doi.org/10.1021/acs.inorgchem.2c03279.Search in Google Scholar PubMed

[28] J. Gao, L. Guo, Y. Wu, Y. Cheng, X. Hu, J. Liu, Z. Liu. Organometallics 40, 3999 (2021), https://doi.org/10.1021/acs.organomet.1c00572.Search in Google Scholar

[29] K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part, B: Applications in Coordinattion, Organometallic and Bioinorganic Chemistry, John Willey & Sons, Hoboken, NJ, USA, 6th ed. (2008), ISBN 97804704005888.10.1002/9780470405888Search in Google Scholar

[30] M. A. Pujante-Galián, S. A. Pérez, M. G. Montalbán, G. Carissimi, M. G. Fuster, G. Víllora, G. García. Molecules 25, 5063 (2020), https://doi.org/10.3390/molecules25215063.Search in Google Scholar PubMed PubMed Central

[31] M. G. Fuster, I. Moulefera, M. G. Montalbán, J. Pérez, G. Víllora, G. García. Molecules 27, 7264 (2022), https://doi.org/10.3390/molecules27217264.Search in Google Scholar PubMed PubMed Central

[32] T. Dooley, G. Fairhurst, C. T. Tiza, K. Tabataian, C. Blanco. Trans. Metal Chem. 3, 299 (1978), https://doi.org/10.1007/bf01393574.Search in Google Scholar

[33] M. A. Bennett, T. N. Huang, T. W. Matheson, K. Smith. Inorganic Synthesis, pp. 74–77, John Wiley & Sons, Hoboken, NJ, USA, Vol. 21 (1982).Search in Google Scholar

[34] J. C. Stockert, A. Blázquez-Castro, M. Cañete, R. W. Horobin, A. Villanueva. Acta Histochem. 114, 785 (2012), https://doi.org/10.1016/j.acthis.2012.01.006.Search in Google Scholar PubMed

[35] G. Eisenbrand, B. Pool-Zobel, V. Baaker, M. Balls, B. J. Blaauboer, A. Boobis. Food Chem. Toxicol. 40, 193 (2002), https://doi.org/10.1016/s0278-6915(01)00118-1.Search in Google Scholar PubMed

[36] J. L. Sebaugh, P. D. McCray. Pharmaceut. Statist. 2, 167 (2003), https://doi.org/10.1002/pst.62.Search in Google Scholar

[37] ATT Bioquest, Inc. Quest GraphTM IC50 Calculator. ATT Bioquest (2022) (Accessed June 25, 2022).Search in Google Scholar

[38] R. Rahbari, T. Sheahan, V. Modes, P. Collier, C. McFarlane, A. R. M Badge. Biotechniques 46, 277 (2009), https://doi.org/10.2144/000113089.Search in Google Scholar PubMed PubMed Central

[39] J. Chen, Y. Zhang, G. Li, F. Peng, X. Jie, J. She, G. Dongye, Z. Zou, S. Rong, L. Chen. J. Biol. Inorg. Chem. 23, 261 (2018), https://doi.org/10.1007/s00775-017-1528-2.Search in Google Scholar PubMed

[40] P. Sudhindra, S. Sharma, N. Roy, P. Moharana, P. Paira. Polyhedron 192, 114827 (2020), https://doi.org/10.1016/j.poly.2020.114827.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2024-0224).


Published Online: 2024-07-12
Published in Print: 2024-12-17

© 2024 IUPAC & De Gruyter

Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0224/html
Scroll to top button