Startseite New half sandwich complexes of ruthenium(ii) and iridium(iii). Study of their toxicity against Hela
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

New half sandwich complexes of ruthenium(ii) and iridium(iii). Study of their toxicity against Hela

  • Alfonso Canales-Martínez , Rosa M. Pérez-Pastor und Gabriel García ORCID logo EMAIL logo
Veröffentlicht/Copyright: 12. Juli 2024

Abstract

In this work, we describe the synthesis and characterisation of the starting materials [Cp*IrCl2]2 and four new ruthenium(II) and iridium(III) complexes half sandwich, contain the fragments [(p-cymene)Ru]2+ and [Cp*Ir]2+; (Cp* = CpMe4Et) of stoichiometry: [Cp*IrCl2(2-aminopyridine)] (I), [Cp*IrCl2(4-aminopyridine)] (II), [Cp*IrCl2(adenine)] (III) and [(p-cymene)RuCl2(adenine)] (IV). The new compounds have been characterised by C, H, and N elemental analysis; infrared and 1H NMR spectroscopy with 1H–1H COSY, ESI/TOF mass spectrometry and thermogravimetry. A study of the cytotoxicity of these compounds against the Hela cell line was carried out, with results indicating a low activity.


Corresponding author: Gabriel García, Departamento de Química Inorgánica, Facultad de Química, Campus Regional de Excelencia, “Campus Mare Nostrum”, Universidad de Murcia, 30071, Murcia, Spain, e-mail:

Award Identifier / Grant number: 10.13039/501100011033

References

[1] M. Zaki, E. Hairat, S. Aazam. RSC Adv. 9, 3239 (2019), https://doi.org/10.1039/c8ra07926a.Suche in Google Scholar PubMed PubMed Central

[2] G. Jaouen. Bioorganometallics, Wiley VCH, Weinheim (Germany) (2006).10.1002/3527607692Suche in Google Scholar

[3] G. Gaouen, P. Dyson. Comprehensive Organometallic Chemistry III 12, R. H. Crabtree, D. M. P. Mingos (Eds.), p. 445, Elsevier Ltd, Oxford (2007).10.1016/B0-08-045047-4/00173-4Suche in Google Scholar

[4] C. G. Hastinger, N. Metzler-Nolte, PJ Dyson. Organometallics 31, 5677 (2012), https://doi.org/10.1021/om300373t.Suche in Google Scholar

[5] C. S. Allardyce, A. Dorcier, C. Scolaro, P. J. Dyson. Appl. Organomet. Chem. 19, 1 (2005), https://doi.org/10.1002/aoc.725.Suche in Google Scholar

[6] (a) B. M. Trost, F. D. Toste, A. B. Pinkerton. Chem. Rev. 101, 2067 (2001).(b) T. Touge, T. Hakamata, H. Nara, T. Kobayashi, T. Sayo, Y. Saito, T. Kayaki, Y. Ikariya. J. Am. Chem. Soc. 133, 14960 (2011).(c) M. Ito, T. Ootsuka, R. Watari, A. Shiibashi, A. Himizu, Y. Ikariya. J. Am. Chem. Soc. 133, 4240 (2011), https://doi.org/10.1021/ja1117254.Suche in Google Scholar PubMed

[7] (a) B. M. Alagesan, P. Sathyadevi, P. Krisnamoorthy, N. S. P. Buvanesh, N. Dharmaraj. Dalton Trans. 43, 15829 (2014), https://doi.org/10.1039/c4dt01032a.(b) P. Starha. Coord. Chem. Rev. 431, 213690 (2021), https://doi.org/10.1016/j.ccr.2020.213690.(c) W. Su, Y. Li, P. Li. Mini. Rev. Med. Chem. 18, 184 (2018), https://doi.org/10.2174/1389557517666170510113453.Suche in Google Scholar PubMed

[8] R. M. Rademaker-Lakhai, D. Van Den Borgard, D. Pluim, J. H. Bejinem, M. Schellens. Cli. Cancer. Res. 10, 3717 (2004), https://doi.org/10.1158/1078-0432.ccr-03-0746.Suche in Google Scholar

[9] C. G. Hartinger, M. A. Jakuper, S. Zorbas-Seifried, M. Groessl, A. Egger, W. Berger, P. J. Dyson, B. J. Keppler. Chem. Biodivers. 5, 2140 (2008).10.1002/cbdv.200890195Suche in Google Scholar PubMed

[10] S. Monro, K. H. Colon, H. Yin, J. Roque, P. J Konds, S. Gujar, R. P. Thummel, L. Llige, C. G. Cameron, S. A. McFarland. Chem. Rev. 119, 797 (2019).10.1021/acs.chemrev.8b00211Suche in Google Scholar PubMed PubMed Central

[11] (a) L. Trynda Lemiesz. Acta Biochim. 52, 199 (2004).(b) A. Bergamo, G. Stocco, C. Casassa, M. Cocchettio, E. Alessio, B. Serlj, S. Zorzet, G. Sava. Int. J. Oncol. 24, 373 (2004).10.18388/abp.2004_3611Suche in Google Scholar

[12] C. Teixeira-Guedes, A. R. Brás, R.G. Teixeira, A. Valente, A. Preto. Pharmaceutics 14, 1293 (2022), https://doi.org/10.3390/pharmaceutics14061293.Suche in Google Scholar PubMed PubMed Central

[13] F. Wang, A. Habtemariam, E. P. van der Geer, R. Fernández, M. Melchart, R. J. Deeth, R. Aird, S. Guichard, F. P. Fabbiani, P. Lozano-Casal, I. D. H. Oswald, D. I. Jodrell, S. Parsons, P. J. Sadle. Proc. Natl. Acad. Sci. U. S. A. 102, 18269 (2005), https://doi.org/10.1073/pnas.0505798102.Suche in Google Scholar PubMed PubMed Central

[14] R. Dua, S. Shrivastava, S. K. Sonwane, S. K. Srivastava. Adv. Biol. Res. 5, 120 (2011).Suche in Google Scholar

[15] G. A. Pereira, A. C. Massabni, E. E. Castellani, L. A. S. Costa, C. Q. F. Leite, F. R. Pavan. Polyhedron 38, 291 (2012), https://doi.org/10.1016/j.poly.2012.03.016.Suche in Google Scholar

[16] (a) C. Fajkusova, M. Pesko, S. Keltosova, J. Guo, Z. Oktabec, M. Vejsova, P. Kollar, A. Koffey, J. Csollej, K. Kralova, J. Jampliek. Bioorg. Med. Chem. 20, 7059 (2012), https://doi.org/10.1016/j.bmc.2012.10.007.(b) R. Chikhale, S. Menghani, R. Babu, R. Bansode, S. Bhargavi, N. Karodia, M. V. Rajasekharan, A. Paradkar, P. Khedekar. Eur. J. Med. Chem. 96, 30 (2015), https://doi.org/10.1016/j.ejmech.2015.04.011.(c) A. K. Ghosh, K. V. Rao, P. R Nyalapatla, H. L Osswald, C. D. Martyr, M. Aoki, H. Hayashi, J. Agniswamy, Y. F. Wang, H. Bulut, D. Das, I. T. Weber, H. Mitsuya. J. Med. Chem. 60, 4267 (2017), https://doi.org/10.1021/acs.jmedchem.7b00172.Suche in Google Scholar PubMed

[17] K. Serdons, T. Verduyckt, D. Vanderghinste, J. Cleynhens, P. Borghgraef, P. Vermaelen Bioorg. Med. Chem. Lett. 17, 602 (2009).Suche in Google Scholar

[18] K. Máliková, L. Masaryk, P. Štarha. Inorganics 9, 26 (2021), https://doi.org/10.3390/inorganics9040026.Suche in Google Scholar

[19] T. Yang, M. Zhu, M. Jiang, F. Yang, Z. Zhang. Front. Pharmacol 13, 1025544 (2022), https://doi.org/10.3389/fphar.2022.1025544.Suche in Google Scholar PubMed PubMed Central

[20] V. K. Mishra, M. Mishra, W. Kashaw, S.K. Kashaw. Bioorg. Med. Chem. 25, 1949 (2017), https://doi.org/10.1016/j.bmc.2017.02.025.Suche in Google Scholar PubMed

[21] D. Munirajasekhar, M. Himaja, S. V. Mali. J. Heterocyclic Chem. 15, 459 (2014).Suche in Google Scholar

[22] K. Cyprych, L. Sznitko, O. Morawski, A. Miniewicz, I. Rau, J. MysliwieC. J. Phys. D Appl. Phys. 48, 195101 (2015), https://doi.org/10.1088/0022-3727/48/19/195101.Suche in Google Scholar

[23] S. Hua, S. Zhang, Y. Hua, Q. Tao, A. Wu. Dyes Pigments 96, 509 (2013).10.1016/j.dyepig.2012.09.019Suche in Google Scholar

[24] P. Patel, D. Gor, P.S. Patel. Chem. Sci. Trans. 2, 1089 (2013).10.7598/cst2013.299Suche in Google Scholar

[25] L. Guo, P. Li, J. Li, Y. Gong, X. Li, Y. Liu, K. Yu, Z. Liu. Inorg. Chem. 62, 15118 (2023).10.1021/acs.inorgchem.3c02118Suche in Google Scholar PubMed

[26] R. Křikavová, M. Romanovová, Z. Jendželovská, M. Majerník, L. Masaryk, P. Zoufalý, D. Milde, J. Moncol, R. Herchel, R. Jendželovský, I. Nemec. Dalton Trans. 52, 12717 (2023), https://doi.org/10.1039/d3dt01696j.Suche in Google Scholar PubMed

[27] X. Hu, L. Guo, M. Liu, Q. Zhang, Y. Gong, M. Sun, S. Feng, X. X. Y. Liu, Z. Liu. Inorg. Chem. 61, 20008 (2022), https://doi.org/10.1021/acs.inorgchem.2c03279.Suche in Google Scholar PubMed

[28] J. Gao, L. Guo, Y. Wu, Y. Cheng, X. Hu, J. Liu, Z. Liu. Organometallics 40, 3999 (2021), https://doi.org/10.1021/acs.organomet.1c00572.Suche in Google Scholar

[29] K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part, B: Applications in Coordinattion, Organometallic and Bioinorganic Chemistry, John Willey & Sons, Hoboken, NJ, USA, 6th ed. (2008), ISBN 97804704005888.10.1002/9780470405888Suche in Google Scholar

[30] M. A. Pujante-Galián, S. A. Pérez, M. G. Montalbán, G. Carissimi, M. G. Fuster, G. Víllora, G. García. Molecules 25, 5063 (2020), https://doi.org/10.3390/molecules25215063.Suche in Google Scholar PubMed PubMed Central

[31] M. G. Fuster, I. Moulefera, M. G. Montalbán, J. Pérez, G. Víllora, G. García. Molecules 27, 7264 (2022), https://doi.org/10.3390/molecules27217264.Suche in Google Scholar PubMed PubMed Central

[32] T. Dooley, G. Fairhurst, C. T. Tiza, K. Tabataian, C. Blanco. Trans. Metal Chem. 3, 299 (1978), https://doi.org/10.1007/bf01393574.Suche in Google Scholar

[33] M. A. Bennett, T. N. Huang, T. W. Matheson, K. Smith. Inorganic Synthesis, pp. 74–77, John Wiley & Sons, Hoboken, NJ, USA, Vol. 21 (1982).Suche in Google Scholar

[34] J. C. Stockert, A. Blázquez-Castro, M. Cañete, R. W. Horobin, A. Villanueva. Acta Histochem. 114, 785 (2012), https://doi.org/10.1016/j.acthis.2012.01.006.Suche in Google Scholar PubMed

[35] G. Eisenbrand, B. Pool-Zobel, V. Baaker, M. Balls, B. J. Blaauboer, A. Boobis. Food Chem. Toxicol. 40, 193 (2002), https://doi.org/10.1016/s0278-6915(01)00118-1.Suche in Google Scholar PubMed

[36] J. L. Sebaugh, P. D. McCray. Pharmaceut. Statist. 2, 167 (2003), https://doi.org/10.1002/pst.62.Suche in Google Scholar

[37] ATT Bioquest, Inc. Quest GraphTM IC50 Calculator. ATT Bioquest (2022) (Accessed June 25, 2022).Suche in Google Scholar

[38] R. Rahbari, T. Sheahan, V. Modes, P. Collier, C. McFarlane, A. R. M Badge. Biotechniques 46, 277 (2009), https://doi.org/10.2144/000113089.Suche in Google Scholar PubMed PubMed Central

[39] J. Chen, Y. Zhang, G. Li, F. Peng, X. Jie, J. She, G. Dongye, Z. Zou, S. Rong, L. Chen. J. Biol. Inorg. Chem. 23, 261 (2018), https://doi.org/10.1007/s00775-017-1528-2.Suche in Google Scholar PubMed

[40] P. Sudhindra, S. Sharma, N. Roy, P. Moharana, P. Paira. Polyhedron 192, 114827 (2020), https://doi.org/10.1016/j.poly.2020.114827.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2024-0224).


Published Online: 2024-07-12
Published in Print: 2024-12-17

© 2024 IUPAC & De Gruyter

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0224/pdf
Button zum nach oben scrollen