Abstract
In this work, we describe the synthesis and characterisation of the starting materials [Cp*IrCl2]2 and four new ruthenium(II) and iridium(III) complexes half sandwich, contain the fragments [(p-cymene)Ru]2+ and [Cp*Ir]2+; (Cp* = CpMe4Et) of stoichiometry: [Cp*IrCl2(2-aminopyridine)] (I), [Cp*IrCl2(4-aminopyridine)] (II), [Cp*IrCl2(adenine)] (III) and [(p-cymene)RuCl2(adenine)] (IV). The new compounds have been characterised by C, H, and N elemental analysis; infrared and 1H NMR spectroscopy with 1H–1H COSY, ESI/TOF mass spectrometry and thermogravimetry. A study of the cytotoxicity of these compounds against the Hela cell line was carried out, with results indicating a low activity.
Funding source: Ministerio de Ciencia e Innovación
Award Identifier / Grant number: 10.13039/501100011033
References
[1] M. Zaki, E. Hairat, S. Aazam. RSC Adv. 9, 3239 (2019), https://doi.org/10.1039/c8ra07926a.Suche in Google Scholar PubMed PubMed Central
[2] G. Jaouen. Bioorganometallics, Wiley VCH, Weinheim (Germany) (2006).10.1002/3527607692Suche in Google Scholar
[3] G. Gaouen, P. Dyson. Comprehensive Organometallic Chemistry III 12, R. H. Crabtree, D. M. P. Mingos (Eds.), p. 445, Elsevier Ltd, Oxford (2007).10.1016/B0-08-045047-4/00173-4Suche in Google Scholar
[4] C. G. Hastinger, N. Metzler-Nolte, PJ Dyson. Organometallics 31, 5677 (2012), https://doi.org/10.1021/om300373t.Suche in Google Scholar
[5] C. S. Allardyce, A. Dorcier, C. Scolaro, P. J. Dyson. Appl. Organomet. Chem. 19, 1 (2005), https://doi.org/10.1002/aoc.725.Suche in Google Scholar
[6] (a) B. M. Trost, F. D. Toste, A. B. Pinkerton. Chem. Rev. 101, 2067 (2001).(b) T. Touge, T. Hakamata, H. Nara, T. Kobayashi, T. Sayo, Y. Saito, T. Kayaki, Y. Ikariya. J. Am. Chem. Soc. 133, 14960 (2011).(c) M. Ito, T. Ootsuka, R. Watari, A. Shiibashi, A. Himizu, Y. Ikariya. J. Am. Chem. Soc. 133, 4240 (2011), https://doi.org/10.1021/ja1117254.Suche in Google Scholar PubMed
[7] (a) B. M. Alagesan, P. Sathyadevi, P. Krisnamoorthy, N. S. P. Buvanesh, N. Dharmaraj. Dalton Trans. 43, 15829 (2014), https://doi.org/10.1039/c4dt01032a.(b) P. Starha. Coord. Chem. Rev. 431, 213690 (2021), https://doi.org/10.1016/j.ccr.2020.213690.(c) W. Su, Y. Li, P. Li. Mini. Rev. Med. Chem. 18, 184 (2018), https://doi.org/10.2174/1389557517666170510113453.Suche in Google Scholar PubMed
[8] R. M. Rademaker-Lakhai, D. Van Den Borgard, D. Pluim, J. H. Bejinem, M. Schellens. Cli. Cancer. Res. 10, 3717 (2004), https://doi.org/10.1158/1078-0432.ccr-03-0746.Suche in Google Scholar
[9] C. G. Hartinger, M. A. Jakuper, S. Zorbas-Seifried, M. Groessl, A. Egger, W. Berger, P. J. Dyson, B. J. Keppler. Chem. Biodivers. 5, 2140 (2008).10.1002/cbdv.200890195Suche in Google Scholar PubMed
[10] S. Monro, K. H. Colon, H. Yin, J. Roque, P. J Konds, S. Gujar, R. P. Thummel, L. Llige, C. G. Cameron, S. A. McFarland. Chem. Rev. 119, 797 (2019).10.1021/acs.chemrev.8b00211Suche in Google Scholar PubMed PubMed Central
[11] (a) L. Trynda Lemiesz. Acta Biochim. 52, 199 (2004).(b) A. Bergamo, G. Stocco, C. Casassa, M. Cocchettio, E. Alessio, B. Serlj, S. Zorzet, G. Sava. Int. J. Oncol. 24, 373 (2004).10.18388/abp.2004_3611Suche in Google Scholar
[12] C. Teixeira-Guedes, A. R. Brás, R.G. Teixeira, A. Valente, A. Preto. Pharmaceutics 14, 1293 (2022), https://doi.org/10.3390/pharmaceutics14061293.Suche in Google Scholar PubMed PubMed Central
[13] F. Wang, A. Habtemariam, E. P. van der Geer, R. Fernández, M. Melchart, R. J. Deeth, R. Aird, S. Guichard, F. P. Fabbiani, P. Lozano-Casal, I. D. H. Oswald, D. I. Jodrell, S. Parsons, P. J. Sadle. Proc. Natl. Acad. Sci. U. S. A. 102, 18269 (2005), https://doi.org/10.1073/pnas.0505798102.Suche in Google Scholar PubMed PubMed Central
[14] R. Dua, S. Shrivastava, S. K. Sonwane, S. K. Srivastava. Adv. Biol. Res. 5, 120 (2011).Suche in Google Scholar
[15] G. A. Pereira, A. C. Massabni, E. E. Castellani, L. A. S. Costa, C. Q. F. Leite, F. R. Pavan. Polyhedron 38, 291 (2012), https://doi.org/10.1016/j.poly.2012.03.016.Suche in Google Scholar
[16] (a) C. Fajkusova, M. Pesko, S. Keltosova, J. Guo, Z. Oktabec, M. Vejsova, P. Kollar, A. Koffey, J. Csollej, K. Kralova, J. Jampliek. Bioorg. Med. Chem. 20, 7059 (2012), https://doi.org/10.1016/j.bmc.2012.10.007.(b) R. Chikhale, S. Menghani, R. Babu, R. Bansode, S. Bhargavi, N. Karodia, M. V. Rajasekharan, A. Paradkar, P. Khedekar. Eur. J. Med. Chem. 96, 30 (2015), https://doi.org/10.1016/j.ejmech.2015.04.011.(c) A. K. Ghosh, K. V. Rao, P. R Nyalapatla, H. L Osswald, C. D. Martyr, M. Aoki, H. Hayashi, J. Agniswamy, Y. F. Wang, H. Bulut, D. Das, I. T. Weber, H. Mitsuya. J. Med. Chem. 60, 4267 (2017), https://doi.org/10.1021/acs.jmedchem.7b00172.Suche in Google Scholar PubMed
[17] K. Serdons, T. Verduyckt, D. Vanderghinste, J. Cleynhens, P. Borghgraef, P. Vermaelen Bioorg. Med. Chem. Lett. 17, 602 (2009).Suche in Google Scholar
[18] K. Máliková, L. Masaryk, P. Štarha. Inorganics 9, 26 (2021), https://doi.org/10.3390/inorganics9040026.Suche in Google Scholar
[19] T. Yang, M. Zhu, M. Jiang, F. Yang, Z. Zhang. Front. Pharmacol 13, 1025544 (2022), https://doi.org/10.3389/fphar.2022.1025544.Suche in Google Scholar PubMed PubMed Central
[20] V. K. Mishra, M. Mishra, W. Kashaw, S.K. Kashaw. Bioorg. Med. Chem. 25, 1949 (2017), https://doi.org/10.1016/j.bmc.2017.02.025.Suche in Google Scholar PubMed
[21] D. Munirajasekhar, M. Himaja, S. V. Mali. J. Heterocyclic Chem. 15, 459 (2014).Suche in Google Scholar
[22] K. Cyprych, L. Sznitko, O. Morawski, A. Miniewicz, I. Rau, J. MysliwieC. J. Phys. D Appl. Phys. 48, 195101 (2015), https://doi.org/10.1088/0022-3727/48/19/195101.Suche in Google Scholar
[23] S. Hua, S. Zhang, Y. Hua, Q. Tao, A. Wu. Dyes Pigments 96, 509 (2013).10.1016/j.dyepig.2012.09.019Suche in Google Scholar
[24] P. Patel, D. Gor, P.S. Patel. Chem. Sci. Trans. 2, 1089 (2013).10.7598/cst2013.299Suche in Google Scholar
[25] L. Guo, P. Li, J. Li, Y. Gong, X. Li, Y. Liu, K. Yu, Z. Liu. Inorg. Chem. 62, 15118 (2023).10.1021/acs.inorgchem.3c02118Suche in Google Scholar PubMed
[26] R. Křikavová, M. Romanovová, Z. Jendželovská, M. Majerník, L. Masaryk, P. Zoufalý, D. Milde, J. Moncol, R. Herchel, R. Jendželovský, I. Nemec. Dalton Trans. 52, 12717 (2023), https://doi.org/10.1039/d3dt01696j.Suche in Google Scholar PubMed
[27] X. Hu, L. Guo, M. Liu, Q. Zhang, Y. Gong, M. Sun, S. Feng, X. X. Y. Liu, Z. Liu. Inorg. Chem. 61, 20008 (2022), https://doi.org/10.1021/acs.inorgchem.2c03279.Suche in Google Scholar PubMed
[28] J. Gao, L. Guo, Y. Wu, Y. Cheng, X. Hu, J. Liu, Z. Liu. Organometallics 40, 3999 (2021), https://doi.org/10.1021/acs.organomet.1c00572.Suche in Google Scholar
[29] K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part, B: Applications in Coordinattion, Organometallic and Bioinorganic Chemistry, John Willey & Sons, Hoboken, NJ, USA, 6th ed. (2008), ISBN 97804704005888.10.1002/9780470405888Suche in Google Scholar
[30] M. A. Pujante-Galián, S. A. Pérez, M. G. Montalbán, G. Carissimi, M. G. Fuster, G. Víllora, G. García. Molecules 25, 5063 (2020), https://doi.org/10.3390/molecules25215063.Suche in Google Scholar PubMed PubMed Central
[31] M. G. Fuster, I. Moulefera, M. G. Montalbán, J. Pérez, G. Víllora, G. García. Molecules 27, 7264 (2022), https://doi.org/10.3390/molecules27217264.Suche in Google Scholar PubMed PubMed Central
[32] T. Dooley, G. Fairhurst, C. T. Tiza, K. Tabataian, C. Blanco. Trans. Metal Chem. 3, 299 (1978), https://doi.org/10.1007/bf01393574.Suche in Google Scholar
[33] M. A. Bennett, T. N. Huang, T. W. Matheson, K. Smith. Inorganic Synthesis, pp. 74–77, John Wiley & Sons, Hoboken, NJ, USA, Vol. 21 (1982).Suche in Google Scholar
[34] J. C. Stockert, A. Blázquez-Castro, M. Cañete, R. W. Horobin, A. Villanueva. Acta Histochem. 114, 785 (2012), https://doi.org/10.1016/j.acthis.2012.01.006.Suche in Google Scholar PubMed
[35] G. Eisenbrand, B. Pool-Zobel, V. Baaker, M. Balls, B. J. Blaauboer, A. Boobis. Food Chem. Toxicol. 40, 193 (2002), https://doi.org/10.1016/s0278-6915(01)00118-1.Suche in Google Scholar PubMed
[36] J. L. Sebaugh, P. D. McCray. Pharmaceut. Statist. 2, 167 (2003), https://doi.org/10.1002/pst.62.Suche in Google Scholar
[37] ATT Bioquest, Inc. Quest GraphTM IC50 Calculator. ATT Bioquest (2022) (Accessed June 25, 2022).Suche in Google Scholar
[38] R. Rahbari, T. Sheahan, V. Modes, P. Collier, C. McFarlane, A. R. M Badge. Biotechniques 46, 277 (2009), https://doi.org/10.2144/000113089.Suche in Google Scholar PubMed PubMed Central
[39] J. Chen, Y. Zhang, G. Li, F. Peng, X. Jie, J. She, G. Dongye, Z. Zou, S. Rong, L. Chen. J. Biol. Inorg. Chem. 23, 261 (2018), https://doi.org/10.1007/s00775-017-1528-2.Suche in Google Scholar PubMed
[40] P. Sudhindra, S. Sharma, N. Roy, P. Moharana, P. Paira. Polyhedron 192, 114827 (2020), https://doi.org/10.1016/j.poly.2020.114827.Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/pac-2024-0224).
© 2024 IUPAC & De Gruyter
Artikel in diesem Heft
- Frontmatter
- In this issue
- IUPAC Recommendations
- Definition of materials chemistry (IUPAC Recommendations 2024)
- Research Articles
- Positional microstates and probability fields in real systems
- Synthesis, characterization and antioxidant screening of a 1,10-phenanthroline-based tetraza-macrocyclic ligand and its nickel complex with therapeutic potential and catalytic significance
- Comprehensive evaluation of physical properties and carbon dioxide capacities of new 2-(butylamino)ethanol-based deep eutectic solvents
- Comprehensive evaluation of the impact of ionic liquid incorporation on the optical properties, Urbach energy, thin film morphology, and surface roughness of poly(vinyl chloride) based on ionic materials
- The impact of nanofiller composition and nature on the enhancement of mechanical and rheological properties of poly(lactic acid) (PLA) nanobiocomposite films is achieved by regulating the spacing of organic fillers and PLA crystallinity
- The case of the disappearing energy: potential energies in concentration gradients
- Removal of metaldehyde pesticide from aquatic media using modified cellulose obtained from Populus nigra plant, as potential adsorbent
- New half sandwich complexes of ruthenium(ii) and iridium(iii). Study of their toxicity against Hela
Artikel in diesem Heft
- Frontmatter
- In this issue
- IUPAC Recommendations
- Definition of materials chemistry (IUPAC Recommendations 2024)
- Research Articles
- Positional microstates and probability fields in real systems
- Synthesis, characterization and antioxidant screening of a 1,10-phenanthroline-based tetraza-macrocyclic ligand and its nickel complex with therapeutic potential and catalytic significance
- Comprehensive evaluation of physical properties and carbon dioxide capacities of new 2-(butylamino)ethanol-based deep eutectic solvents
- Comprehensive evaluation of the impact of ionic liquid incorporation on the optical properties, Urbach energy, thin film morphology, and surface roughness of poly(vinyl chloride) based on ionic materials
- The impact of nanofiller composition and nature on the enhancement of mechanical and rheological properties of poly(lactic acid) (PLA) nanobiocomposite films is achieved by regulating the spacing of organic fillers and PLA crystallinity
- The case of the disappearing energy: potential energies in concentration gradients
- Removal of metaldehyde pesticide from aquatic media using modified cellulose obtained from Populus nigra plant, as potential adsorbent
- New half sandwich complexes of ruthenium(ii) and iridium(iii). Study of their toxicity against Hela