Startseite Naturwissenschaften Computational study on reactivity, aromaticity, and absorption spectra of chrysene: effect of BN doping and substituents
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Computational study on reactivity, aromaticity, and absorption spectra of chrysene: effect of BN doping and substituents

  • Bapan Saha ORCID logo EMAIL logo und Pradip Kr. Bhattacharyya
Veröffentlicht/Copyright: 3. April 2024

Abstract

Density functional study (DFT) is performed for understanding the reactivity, aromaticity, and UV-visible absorption spectra of chrysene-based materials. Effect of BN doping on the said parameters are analyzed along with the effect of –Me (methyl), –OH (hydroxyl), –CHO (formyl) –COOH (carboxyl) and –CN (cyano) substituents. Global reactivity parameters viz. energy of HOMO (E HOMO), global hardness (η), chemical potential (μ) and electrophilicity (ω) are computed. Nucleus independent chemical shifts (NICS) values are estimated to study the variation in aromaticity. Time dependent density functional theory (TD-DFT) is used to study the UV–Visible absorption spectra. Effects of BN doping and substituents on corresponding dipole moments and band gaps are also analyzed. Presence of BN unit and/or substituents induced considerable impact on global reactivity, dipole moment, band gap and aromaticity of the chosen systems, especially for BN doped chrysene at the edge. Absorption spectra which are red shifted in presence of BN and substituents are mostly found within the UV-region.


Corresponding author: Bapan Saha, Department of Chemistry, Handique Girls’ College, Gauhati University, Guwahati, 781001, India, e-mail:
Article note: A collection of invited papers based on presentations at the Virtual Conference on Chemistry and its Applications 2023 (VCCA-2023).

Funding source: Department of Science and Technology, Govt. of India

Award Identifier / Grant number: SB/S1/PC-17/2014

Acknowledgments

Authors sincerely acknowledge the Department of Science and Technology, New Delhi, (Grant No. SB/S1/PC-17/2014) India for providing financial assistance required for the study.

References

[1] K. Takimiya, I. Osaka, M. Nakano. Chem. Mater. 26, 587 (2014), https://doi.org/10.1021/cm4021063.Suche in Google Scholar

[2] L. Dou, J. You, Z. Hong, X. Xu, G. Li, R. A. Street, Y. Yang. Adv. Mater. 25, 6642 (2013), https://doi.org/10.1002/adma.201302563.Suche in Google Scholar PubMed

[3] J. Mei, Y. Diao, A. L. Appleton, L. Fang, Z. Bao. J. Am. Chem. Soc. 135, 6724 (2013), https://doi.org/10.1021/ja400881n.Suche in Google Scholar PubMed

[4] P. Tyagi, A. Venkateswararao, K. R. J. Thomas. J. Org. Chem. 76, 4571 (2011), https://doi.org/10.1021/jo2004764.Suche in Google Scholar PubMed

[5] A. Facchetti. Chem. Mater. 23, 733 (2011), https://doi.org/10.1021/cm102419z.Suche in Google Scholar

[6] Z. A. Tehrani, K. S. Kim. Int. J. Quant Chem. 116, 622 (2016), https://doi.org/10.1002/qua.25109.Suche in Google Scholar

[7] H. J. Schneider. Acc. Chem. Res. 46, 1010 (2013), https://doi.org/10.1021/ar3000579.Suche in Google Scholar PubMed

[8] L. M. Salonen, M. Ellermann, F. Diederich. Angew. Chem., Int. Ed. 50, 4808 (2011), https://doi.org/10.1002/anie.201007560.Suche in Google Scholar PubMed

[9] B. Saha, P. K. Bhattacharyya. New J. Chem. 41, 5040 (2017), https://doi.org/10.1039/c7nj00057j.Suche in Google Scholar

[10] Y. H. Chung, L. Sheng, X. Xing, L. Zheng, M. Bian, Z. Chen, L. Xiao, Q. Gonga. J. Mater. Chem. C 3, 1794 (2015), https://doi.org/10.1039/c4tc02669a.Suche in Google Scholar

[11] T. H. E. Assaad, M. Auer, R. Castaneda, K. M. Hallal, F. M. Jradi, L. Mosca, R. S. Khnayzer, D. Patra, T. V. Timofeeva, J. Bredas, E. J. M. List-Kratochvil, B. Wex, B. R. Kaafarani. J. Mater. Chem. C 4, 3041 (2016), https://doi.org/10.1039/c5tc02849c.Suche in Google Scholar

[12] J. S. A. Ishibashi, A. Dargelos, C. Darrigan, A. Chrostowska, S. Y. Liu. Organometallics 36, 2494 (2017), https://doi.org/10.1021/acs.organomet.7b00296.Suche in Google Scholar

[13] J. W. Levell, A. Ruseckas, J. B. Henry, Y. Wang, A. D. Stretton, A. R. Mount, T. H. Galow, I. D. W. Samuel. J. Phys. Chem. A 114, 13291 (2010), https://doi.org/10.1021/jp106622n.Suche in Google Scholar PubMed

[14] K. R. J. Thomas, N. Kapoor, M. N. K. P. Bolisetty, J. H. Jou, Y. L. Chen, Y. C. Jou. J. Org. Chem. 77, 3921 (2012), https://doi.org/10.1021/jo300285v.Suche in Google Scholar PubMed

[15] A. S. Ionkin, W. J. Marshall, B. M. Fish, L. M. Bryman, Y. Wang. Chem. Commun., 2319 (2008), https://doi.org/10.1039/b715386d.Suche in Google Scholar PubMed

[16] A. Li, S. H. Wena, J. L. Song, W. Q. Deng. Org. Electron. 10, 1054 (2009), https://doi.org/10.1016/j.orgel.2009.05.016.Suche in Google Scholar

[17] X. Y. Wang, J. Y. Wang, J. Pei. Chem. Eur. J. 20, 1 (2014), https://doi.org/10.1002/chem.201405627.Suche in Google Scholar PubMed

[18] J. Tasseroul, M. Mercedes, L. Garcia, J. Dosso, F. Simon, S. Velari, A. T. Vita, P. Tecilla, D. Bonifazi. J. Org. Chem. 85, 3454 (2020), https://doi.org/10.1021/acs.joc.9b03202.Suche in Google Scholar PubMed

[19] J. M. Farrell, C. Mutzel, D. Bialas, M. Rudolf, K. Menekse, A. M. Krause, M. Stolte, F. Wurthner. J. Am. Chem. Soc. 141, 9096 (2019), https://doi.org/10.1021/jacs.9b04675.Suche in Google Scholar PubMed

[20] J. Huang, Y. Li. Front. Chem. 6, 341 (2018), https://doi.org/10.3389/fchem.2018.00341.Suche in Google Scholar PubMed PubMed Central

[21] C. R. McConnell, S. Y. Liu. Chem. Soc. Rev. 48, 3436 (2019), https://doi.org/10.1039/c9cs00218a.Suche in Google Scholar PubMed PubMed Central

[22] A. Abengozar, D. Sucunza, P. Garcia-Garcia, D. Sampedro, A. Perez-Redondo, J. J. Vaquero. J. Org. Chem. 84, 7113 (2019), https://doi.org/10.1021/acs.joc.9b00800.Suche in Google Scholar PubMed

[23] C. Zhang, L. Zhang, C. Sun, W. Sun, X. Liu. Org. Lett. 21, 3476 (2019), https://doi.org/10.1021/acs.orglett.9b00530.Suche in Google Scholar PubMed

[24] H. Orucu, N. Acar. Comput. Theor. Chem. 1056, 11 (2015), https://doi.org/10.1016/j.comptc.2015.01.001.Suche in Google Scholar

[25] A. Kınal, N. Acar. J. Mol. Struct. THEOCHEM 949, 36 (2010), https://doi.org/10.1016/j.theochem.2010.02.033.Suche in Google Scholar

[26] N. Acar. Asian J. Chem. 23, 597 (2011).10.15358/0935-0381-2011-11-597Suche in Google Scholar

[27] W. Sotoyama, H. Sato, M. Kinoshita, T. Takahashi, A. Matsuura, J. Kodama, N. Sawatari, H. Inoue. Tetra-substituted pyrenes: new class of blue emitter for organic light-emitting diodes InSID. In Symposium Digest of Technical Papers, pp. 1294–1297 (2003).10.1889/1.1832523Suche in Google Scholar

[28] A. Kathiravan, M. Panneerselvam, K. Sundaravel, N. Pavithra, V. Srinivasan, S. Anandand, M. Jaccob. Phys. Chem. Chem. Phys. 18, 13332 (2016), https://doi.org/10.1039/c6cp00571c.Suche in Google Scholar PubMed

[29] O. Khorev, C. D. Bosch, M. Probst, R. Haner. Chem. Sci. 5, 1506 (2014), https://doi.org/10.1039/c3sc53316f.Suche in Google Scholar

[30] T. L. Wu, H. H. Chou, P. Y. Huang, C. H. Cheng, R. S. Liu. J. Org. Chem. 79, 267 (2014), https://doi.org/10.1021/jo402429q.Suche in Google Scholar PubMed

[31] X. Zhao, C. Ge, X. Yang, X. Gao. Mater. Chem. Front. 1, 1635 (2017), https://doi.org/10.1039/c7qm00030h.Suche in Google Scholar

[32] H. Shin, H. Jung, B. Kim, J. Lee, J. Moon, J. Kim, J. Park. J. Mater. Chem. C 4, 3833 (2016), https://doi.org/10.1039/c5tc03749b.Suche in Google Scholar

[33] A. N. Simonov, P. Kemppinen, C. P. Gonzalo, J. F. Boas, A. Bilic, A. D. Scully, A. Attia, A. Nafady, E. A. Mashkina, K. N. Winzenberg, S. E. Watkins, A. M. Bond. J. Phys. Chem. B 118, 6839 (2014), https://doi.org/10.1021/jp501220v.Suche in Google Scholar PubMed

[34] A. Abengozar, I. Valencia, G. G. Otarola, D. Sucunza, P. G. García, A. P. Redondo, F. Mendicutib, J. J. Vaquero. Chem. Commun. 56, 3669 (2020), https://doi.org/10.1039/c9cc09998k.Suche in Google Scholar PubMed

[35] D. Ghosh, G. Periyasamy, S. K. Pati. Phys. Chem. Chem. Phys. 13, 20627 (2011), https://doi.org/10.1039/c1cp22104c.Suche in Google Scholar PubMed

[36] B. Saha, P. K. Bhattacharyya. RSC Adv. 6, 79768 (2016), https://doi.org/10.1039/c6ra15016k.Suche in Google Scholar

[37] B. Saha, P. K. Bhattacharyya. Phys. Sci. Rev. 8, 793 (2023), https://doi.org/10.1515/psr-2020-0086.Suche in Google Scholar

[38] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. MontgomeryJr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. in Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT (2010).Suche in Google Scholar

[39] T. Koopmans. Physica 1, 104 (1934), https://doi.org/10.1016/s0031-8914(34)90011-2.Suche in Google Scholar

[40] R. G. Parr, L. V. Szentpaly, S. Liu. J. Am. Chem. Soc. 121, 1922 (1999), https://doi.org/10.1021/ja983494x.Suche in Google Scholar

[41] R. G. Parr, W. Yang. in Density-Functional Theory of Atoms and Molecules; International Series of Monographs on Chemistry, Oxford University Press, Oxford (1989).Suche in Google Scholar

[42] P. V. Schleyer, C. Maerker, A. Dransfeld, H. J. Jiao, N. Hommes. J. Am. Chem. Soc. 118, 6317 (1996), https://doi.org/10.1021/ja960582d.Suche in Google Scholar PubMed

[43] J. Fabian. Dyes Pigm. 84, 36 (2010), https://doi.org/10.1016/j.dyepig.2009.06.008.Suche in Google Scholar

[44] J. Tomasi, B. Mennucci, R. Cammi. Chem. Rev. 105, 2999 (2005), https://doi.org/10.1021/cr9904009.Suche in Google Scholar PubMed

[45] P. Sjoberg, P. Politzer. J. Phys. Chem. 94, 3959 (1990), https://doi.org/10.1021/j100373a017.Suche in Google Scholar

[46] G. S. Remya, C. H. Suresh. Phys. Chem. Chem. Phys. 18, 20615 (2016), https://doi.org/10.1039/c6cp02936a.Suche in Google Scholar PubMed

[47] A. K. Phukan, R. P. Kalagi, S. R. Gadre, E. D. Jemmis. Inorg. Chem. 43, 5824 (2004), https://doi.org/10.1021/ic049690o.Suche in Google Scholar PubMed

[48] E. R. Abbey, L. N. Zakharov, S. Y. Liu. J. Am. Chem. Soc. 130, 7250 (2008), https://doi.org/10.1021/ja8024966.Suche in Google Scholar PubMed

[49] H. Shin, H. Jung, B. Kim, J. Lee, J. Moon, J. Kim, J. Park. J. Mater. Chem. C 4, 3833 (2016), https://doi.org/10.1039/c5tc03749b.Suche in Google Scholar

[50] R. G. Pearson. J. Am. Chem. Soc. 85, 3533 (1963), https://doi.org/10.1021/ja00905a001.Suche in Google Scholar

[51] T. M. Krygowski, H. Szatylowicz, O. A. Stasyuk, J. Dominikowska, M. Palusiak. Chem. Rev. 114, 6383 (2014), https://doi.org/10.1021/cr400252h.Suche in Google Scholar PubMed

[52] P. v. R. Schleyer, M. Manoharan, Z. X. Wang, B. Kiran, H. Jiao, R. Puchta, N. Hommes. Org. Lett. 3, 2465 (2001), https://doi.org/10.1021/ol016217v.Suche in Google Scholar PubMed

[53] D. Ghosh, G. Periyasamy, S. K. Pati. Phys. Chem. Chem. Phys. 13, 20627 (2011), https://doi.org/10.1039/c1cp22104c.Suche in Google Scholar PubMed

[54] P. Rani, G. S. Dubey, V. Jindal. Phys. E 62, 28 (2014), https://doi.org/10.1016/j.physe.2014.04.010.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2023-1105).


Published Online: 2024-04-03
Published in Print: 2024-05-27

© 2024 IUPAC & De Gruyter

Heruntergeladen am 19.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2023-1105/html?lang=de
Button zum nach oben scrollen