Automating the production of [Fe18FF2(BnMe2-tacn)] and investigating radiostabilisers for use with high-activity [18F]F−
-
Madeleine S. Woodward
Abstract
The manual radiofluorination and purification of [FeF3(BnMe2-tacn)] (tacn = 1,4,7-triazacyclononane) using 18F− in aqueous EtOH has been translated to a GE FASTLab™ automatic synthesis platform and optimised by conducting a series of low-activity radiolabelling experiments to explore the effects of varying the precursor concentration, temperature, heating time, addition of NaOAc buffer and EtOH:H2O ratio. The optimal conditions were determined to be 1 mg/mL of the precursor being heated at 120 °C for 10 min in 75 %:25 % EtOH:H2O containing 18F−, with elution using 10 mM NaOAc, giving 61 % radiochemical yield (RCY). These conditions were then employed with high-activity 18F− giving a 97 % radiochemical purity (RCP) at t = 0, which decreases by 22 % over 5 h. Sodium ascorbate, nicotinamide and p-benzoic acid (pABA) were then tested as potential radiostabilisers for this system, initially using low-activity 18F−. These experiments revealed very rapid defluorination of the radioproduct in the presence of sodium ascorbate. In contrast, both nicotinamide and pABA appear to be effective radiostabilisers, resulting in RCP values of 91 % and 89 %, respectively, after 2 h, which compare with an RCP of 81 % under analogous conditions at t = 2 h in their absence. High-activity experiments were then undertaken with addition of 5 mg/mL of nicotinamide, with a radio-active concentration (RAC) of 220 MBq/mL, giving RCY of 26 % and following purification, RCP values for the [Fe18FF2(BnMe2-tacn)] product of 97 % at t = 0 and 86 % after 3 h.
Funding source: Engineering and Physical Sciences Research Council
Award Identifier / Grant number: EP/R513325/1
Award Identifier / Grant number: EP/S032789/1
Funding source: GE Healthcare
Award Identifier / Grant number: Unassigned
Acknowledgments
This research was funded by a CASE studentship to M.S.W from GE Healthcare and EPSRC grant number EP/R513325/1, and through the EPSRC Mithras Programme Grant (EP/S032789/1).
References
[1] P. W. Miller, N. J. Long, R. Vilar, A. D. Gee. Angew. Chem., Int. Ed. 47, 8998 (2008), https://doi.org/10.1002/anie.200800222.Search in Google Scholar PubMed
[2(a)] K. Chansaenpak, B. Vabre, F. P. Gabbaï. Chem. Soc. Rev. 45, 954 (2016), https://doi.org/10.1039/c5cs00687b.Search in Google Scholar PubMed
(b) W. Levason, F. M. Monzittu, G. Reid. Coord. Chem. Rev. 391, 90 (2019), https://doi.org/10.1016/j.ccr.2019.04.005.Search in Google Scholar
[3(a)] R. Ting, M. J. Adam, T. J. Ruth, D. M. Perrin. J. Am. Chem. Soc. 127, 13094 (2005), https://doi.org/10.1021/ja053293a.Search in Google Scholar PubMed
(b) T. W. Hudnall, F. P. Gabbaï. J. Am. Chem. Soc. 129, 11978 (2007), https://doi.org/10.1021/ja073793z.Search in Google Scholar PubMed
(c) A. Khoshnevisan, M. Jauregui-Osoro, K. Shaw, J. B. Torres, J. D. Young, N. K. Ramakrishnan, A. Jackson, G. E. Smith, A. D. Gee, P. J. Blower. EJNMMI Res. 6, 34 (2016), https://doi.org/10.1186/s13550-016-0188-5.Search in Google Scholar PubMed PubMed Central
(d) J. O’Doherty, M. Jauregui-Osoro, T. Brothwood, T. Szyszko, P. K. Marsden, M. J. O’Doherty, G. J. R. Cook, P. J. Blower, V. Lewington. J. Nucl. Med. 58, 1666 (2017), https://doi.org/10.2967/jnumed.117.192252.Search in Google Scholar PubMed PubMed Central
(e) Z. Li, K. Chansaenpak, S. Liu, C. R. Wade, P. S. Conti, F. P. Gabbaï. MedChemComm, 3, 1305 (2012), https://doi.org/10.1039/c2md20105d.Search in Google Scholar
(f) K. Chansaenpak, M. Wang, Z. Wu, R. Zaman, Z. Li, F. P. Gabbaï. Chem. Commun. 51, 12439 (2015), https://doi.org/10.1039/c5cc04545b.Search in Google Scholar PubMed PubMed Central
(g) Z. Liu, M. Pourghiasian, M. A. Radtke, J. Lau, J. Pan, G. M. Dias, D. Yapp, K. S. Lin, F. Bénard, D. M. Perrin. Angew. Chem., Int. Ed. 53, 11876 (2014), https://doi.org/10.1002/anie.201406258.Search in Google Scholar PubMed
[4(a)] R. Schirrmacher, G. Bradtmoller, E. Schirrmacher, O. Thews, J. Tillmanns, T. Siessmeier, H. G. Buchholz, P. Bartenstein, B. Wängler, C. M. Niemeyer, K. Jurkschat. Angew. Chem., Int. Ed. 45, 6047 (2006), https://doi.org/10.1002/anie.200600795.Search in Google Scholar PubMed
(b) C. Wängler, B. Waser, A. Alke, L. Iovkova, H. G. Buchholz, S. Niedermoser, K. Jurkschat, C. Fottner, P. Bertenstein, R. Schirrmacher, J. C. Reubi, H. J. Wester, B. Wängler. Bioconjugate Chem. 21, 2289 (2010), https://doi.org/10.1021/bc100316c.Search in Google Scholar PubMed
(c) S. Niedermoser, J. Chin, C. Wängler, A. Kostikov, V. Bernard-Gauthier, N. Vogler, J. P. Soucy, A. J. McEwan, R. Schirrmacher, B. Wängler. J. Nucl. Med., 56, 1100 (2015), https://doi.org/10.2967/jnumed.114.149583.Search in Google Scholar PubMed
[5(a)] P. Laverman, W. McBride, R. Sharkey, A. Eek, L. Joosten, W. Oyen, D. Goldenberg, O. Boerman. J. Nucl. Med. 51, 454 (2010), https://doi.org/10.2967/jnumed.109.066902.Search in Google Scholar PubMed PubMed Central
(b) W. McBride, C. D’Souza, R. Sharkey, H. Karacay, E. Rossi, C. Chang, D. Goldenberg. Bioconjugate Chem. 21, 1331 (2010), https://doi.org/10.1021/bc100137x.Search in Google Scholar PubMed PubMed Central
(c) W. McBride, R. Sharkey, H. Karacay, C. D’Souza, E. Rossi, P. Laverman, C. Chang, O. Boerman, D. Goldenberg. J. Nucl. Med. 50, 991 (2009), https://doi.org/10.2967/jnumed.108.060418.Search in Google Scholar PubMed
(d) W. McBride, C. D’Souza, H. Karacay, R. Sharkey, D. Goldenberg. Bioconjugate Chem. 23, 538 (2012), https://doi.org/10.1021/bc200608e.Search in Google Scholar PubMed PubMed Central
(e) J. H. Teh, M. Braga, L. Allott, C. Barnes, J. Hernandez-Gil, M.-X. Tang, E. O. Aboagye, N. J. Long. Chem. Commun. 57, 11677 (2021), https://doi.org/10.1039/d1cc04790f.Search in Google Scholar PubMed PubMed Central
(f) S. Schmitt, E. Moreau. Coord. Chem. Rev. 480, 215028 (2023), https://doi.org/10.1016/j.ccr.2023.215028.Search in Google Scholar
(g) W. Levason, S. K. Luthra, G. McRobbie, F. M. Monzittu, G. Reid. Dalton Trans. 46, 14519 (2017), https://doi.org/10.1039/c7dt02122d.Search in Google Scholar PubMed
[6(a)] F. M. Monzittu, I. Khan, W. Levason, S. K. Luthra, G. McRobbie, G. Reid. Angew. Chem., Int. Ed. 57, 6658 (2018), https://doi.org/10.1002/anie.201802446.Search in Google Scholar PubMed PubMed Central
(b) R. Bhalla, W. Levason, S. K. Luthra, G. McRobbie, G. Sanderson, G. Reid. Chem. – Eur. J. 21, 4688 (2015), https://doi.org/10.1002/chem.201405812.Search in Google Scholar PubMed PubMed Central
(c) R. Bhalla, C. Darby, W. Levason, S. K. Luthra, G. McRobbie, G. Reid, G. Sanderson. Chem. Sci. 5, 381 (2014), https://doi.org/10.1039/c3sc52104d.Search in Google Scholar
(d) T. K. Venkatachalam, P. V. Bernhardt, D. H. R. Stimson, G. K. Pierens, R. Bhalla, D. C. Reutens. Aust. J. Chem. 71, 81 (2018), https://doi.org/10.1071/ch17334.Search in Google Scholar
(e) P. J. Blower, R. Cusnir, A. Darwesh, N. J. Long, M. T. Ma, B. E. Osborne, T. W. Price, J. Pellico, G. Reid, R. Southworth, G. J. Stasiuk, S. Y. A. Terry, R. Torres Martin de Rosales. Adv. Inorg. Chem. 78, 1 (2021).10.1016/bs.adioch.2021.04.002Search in Google Scholar
[7] P. J. Blower, W. Levason, S. K. Luthra, G. McRobbie, F. M. Monzittu, T. O. Mules, G. Reid, M. N. Subhan. Dalton Trans. 48, 6767 (2019), https://doi.org/10.1039/c8dt03696a.Search in Google Scholar PubMed
[8] J. N. Whetter, B. A. Vaughn, A. J. Koller, E. Boros. Angew. Chem., Int. Ed. 61, e202114203 (2022), https://doi.org/10.1002/ange.202114203.Search in Google Scholar
[9] L. Allott, A. Amgheib, C. Barnes, M. Braga, D. Brickute, N. Wang, R. Fu, S. Ghaem-Maghami, E. O. Aboagye. React. Chem. Eng. 6, 1070 (2021), https://doi.org/10.1039/d1re00117e.Search in Google Scholar PubMed PubMed Central
[10] S. Li, A. Schmitz, H. Lee, R. H. Mach. EJNMMI Radiopharm. Chem. 1, 15 (2016), https://doi.org/10.1186/s41181-016-0018-0.Search in Google Scholar PubMed PubMed Central
[11] T. Wickstrøm, A. Clarke, I. Gausemel, E. Horn, K. Jørgensen, I. Khan, D. Mantzilas, T. Rajanayagam, D.-J. In ’t Veld, W. Trigg. J. Labelled Compd. Radiopharm. 57, 42 (2014), https://doi.org/10.1002/jlcr.3112.Search in Google Scholar PubMed
[12] L. Allott, E. O. Aboagye. Mol. Pharmaceutics 17, 2245 (2020), https://doi.org/10.1021/acs.molpharmaceut.0c00328.Search in Google Scholar PubMed
[13] S. M. Ametamey, M. Honer, P. A. Schubiger. Chem. Rev. 108, 1501 (2008), https://doi.org/10.1021/cr0782426.Search in Google Scholar PubMed
[14] C. D. Jonah. Radiat. Res. 144, 141 (1995), https://doi.org/10.2307/3579253.Search in Google Scholar
[15] W. M. Garrison. Chem. Rev. 87, 381 (1987), https://doi.org/10.1021/cr00078a006.Search in Google Scholar
[16] D. Swiatla-Wojcik, G. V. Buxton. Rad. Phys. Chem. 74, 210 (2005), https://doi.org/10.1016/j.radphyschem.2005.04.014.Search in Google Scholar
[17] S. Liu, D. S. Edwards. Bioconjugate Chem. 12, 7 (2001), https://doi.org/10.1021/bc000070v.Search in Google Scholar PubMed
[18] S. Liu, C. E. Ellars, D. S. Edwards. Bioconjugate Chem. 14, 1052 (2003), https://doi.org/10.1021/bc034109i.Search in Google Scholar PubMed
[19] J. Chen, K. E. Linder, A. Cagnolini, E. Metcalfe, N. Raju, M. F. Tweedle, R. E. Swenson. Appl. Rad. Isot. 66, 497 (2008), https://doi.org/10.1016/j.apradiso.2007.11.007.Search in Google Scholar PubMed
[20] S. Liu, E. Cheung, M. Rajopadhye, N. E. Williams, K. L. Overoye, D. S. Edwards. Bioconjugate Chem. 12, 84 (2001), https://doi.org/10.1021/bc000071n.Search in Google Scholar PubMed
[21] W. A. P. Breeman, A. C. Fröberg, E. de Blois, A. van Gameren, M. Melis, M. de Jong, T. Maina, B. A. Nock, J. L. Erion, H. R. Mäcke, E. P. Krenning. Nucl. Med. Biol. 35, 839 (2008), https://doi.org/10.1016/j.nucmedbio.2008.09.006.Search in Google Scholar PubMed
[22] A. Filice, A. Fraternali, A. Frasoldati, M. Asti, E. Grassi, L. Massi, M. Sollini, A. Froio, P. A. Erba, A. Versari. J. Oncol. 2012, 320198 (2012), https://doi.org/10.1155/2012/320198.Search in Google Scholar PubMed PubMed Central
[23] T. Engell, D. Mantzilas, J. Grigg. Purification of [18F] – fluciclatide (2013), US09180213B2, publication date 01-11-2015.Search in Google Scholar
[24] R. Pettitt, J. Grigg, T. Engell, C. Wickmann. J. Nucl. Med. 51, 530 (2010).Search in Google Scholar
[25] K. K. Solanki. Stabilization of radiopharmaceutical compositions, (1993). US5262175A, publication date 16-11-1993.Search in Google Scholar
[26] F. P. Charleson. Stabilized radiopharmaceutical compositions. (1989). US4880615A, publication date 14-11-1989.Search in Google Scholar
[27] S. Liu, D. S. Edwards. Bioconjugate Chem. 12, 554 (2001), https://doi.org/10.1021/bc000145v.Search in Google Scholar PubMed
[28] A. M. Abreu Diaz, G. O. Drumeva, D. R. Petrenyov, J.-F. Carrier, J. N. DaSilva. ACS Omega 5, 20353 (2020), https://doi.org/10.1021/acsomega.0c02310.Search in Google Scholar PubMed PubMed Central
[29] F. Monzittu. Main group and transition metal-based chelates for PET applications, PhD Thesis, University of Southampton, Southampton (2018).Search in Google Scholar
[30] J. Shen, P. T. Griffiths, S. J. Campbell, B. Utinger, M. Kalberer, S. E. Palson. Sci. Rep. 11, 7417 (2021), https://doi.org/10.1038/s41598-021-86477-8.Search in Google Scholar PubMed PubMed Central
[31] M. J. Hynes, D. F. Kelly. J. Chem. Soc., Chem. Commun., 849 (1988), https://doi.org/10.1039/c39880000849.Search in Google Scholar
[32] H. H. Coenen, A. D. Gee, M. Adam, G. Antoni, C. S. Cutler, Y. Fujibayashi, J. M. Jeong, R. H. Mach, T. L. Mindt, V. W. Pike, A. D. Windhorst. Nucl. Med. Biol. 55, v (2017), https://doi.org/10.1016/j.nucmedbio.2017.09.004.Search in Google Scholar PubMed
[33] R. Edwards, H. E. Greenwood, G McRobbie, I. Khan, T. H. Witney. Molec. Imag. Biol. 23, 854 (2021), https://doi.org/10.1007/s11307-021-01609-w.Search in Google Scholar PubMed PubMed Central
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/pac-2023-1008).
© 2023 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- Editorial
- IUPAC Distinguished Women in Chemistry and Chemical Engineering Awards 2023
- Special topic papers
- Catalytic oxidative carbon–carbon bond-formations of benzene-1,2-diols
- Supramolecular assemblies with macrocyclic hosts: applications in antibacterial activity
- Women in chemistry: remarkable progress, but are we there yet?
- Automating the production of [Fe18FF2(BnMe2-tacn)] and investigating radiostabilisers for use with high-activity [18F]F−
- Bridging two worlds: (DABCO-H)CuKI3 a hybrid copper iodide phosphor with a perovskite structure
- Empowering women in science through role models, mentors, and support groups: a personal perspective
- Peptides for therapeutic applications – challenges and chances
- Mechanisms of chemical vapor generation by aqueous boranes for trace element analysis: a rather long and unfinished story
- IUPAC Technical Report
- A brief guide to measurement uncertainty (IUPAC Technical Report)
- IUPAC Recommendations
- Definition of the pnictogen bond (IUPAC Recommendations 2023)
Articles in the same Issue
- Frontmatter
- Editorial
- IUPAC Distinguished Women in Chemistry and Chemical Engineering Awards 2023
- Special topic papers
- Catalytic oxidative carbon–carbon bond-formations of benzene-1,2-diols
- Supramolecular assemblies with macrocyclic hosts: applications in antibacterial activity
- Women in chemistry: remarkable progress, but are we there yet?
- Automating the production of [Fe18FF2(BnMe2-tacn)] and investigating radiostabilisers for use with high-activity [18F]F−
- Bridging two worlds: (DABCO-H)CuKI3 a hybrid copper iodide phosphor with a perovskite structure
- Empowering women in science through role models, mentors, and support groups: a personal perspective
- Peptides for therapeutic applications – challenges and chances
- Mechanisms of chemical vapor generation by aqueous boranes for trace element analysis: a rather long and unfinished story
- IUPAC Technical Report
- A brief guide to measurement uncertainty (IUPAC Technical Report)
- IUPAC Recommendations
- Definition of the pnictogen bond (IUPAC Recommendations 2023)