Home Physical Sciences Supramolecular assemblies with macrocyclic hosts: applications in antibacterial activity
Article
Licensed
Unlicensed Requires Authentication

Supramolecular assemblies with macrocyclic hosts: applications in antibacterial activity

  • Suprotim Koley , Monika Gaur , Nilotpal Barooah , Achikanath C. Bhasikuttan and Jyotirmayee Mohanty EMAIL logo
Published/Copyright: November 10, 2023

Abstract

This review article focuses on the supramolecular assemblies fabricated through host-guest interaction using macrocycles such as cyclodextrins, calixarenes and cucurbiturils as hosts. Though several review articles have appeared on such host-guest assemblies having importance in controlled drug-delivery, fluorescence on-off sensors, catalysis etc., not much attention has been given to collect their potential applications in antibacterial activity. In this article we have mainly discussed the concepts, strategies and applications to enhance the antibacterial activity of different assemblies with some of the well-established antibacterial drugs/agents. The enhanced antibacterial activity of hydrogel, gelatin composite film, bismuth oxide nanoparticles and sanguinarine drug in the presence of cyclodextrins have been described in detail. The mechanism for the improved antibacterial activity of calixarene-capped nanoparticles, calixarene-complexed antibiotics and stimuli-responsive calixarene-based nanoassemblies for NO release was discussed. The enhanced photosensitizing effect of cucurbituril (CB) complexed porphyrins and their stimuli-responsive control over its antibacterial activity and the photothermal therapy has been elaborated. The effect of augmented antibacterial activity of CB-encapsulated drugs have also been given emphasis as they are promising for long-acting antibiotics.


Corresponding author: Jyotirmayee Mohanty, Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; and Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India, e-mail:
Article note: A special collection of invited papers by recipients of the 2023 IUPAC Distinguished Women in Chemistry and Chemical Engineering Awards.

References

[1] L. J. Shallcross, S. C. Davies. J. Antimicrob. Chemother. 69, 2883 (2014), https://doi.org/10.1093/jac/dku34669.Search in Google Scholar

[2] V. M. D’Costa, C. E. King, L. Kalan, M. Morar, W. W. L. Sung, C. Schwarz, D. Froese, G. Zazula, F. Calmels, R. Debruyne, G. B. Golding, H. N. Poinar, G. D. Wright. Nature 477, 457 (2011), https://doi.org/10.1038/nature10388.Search in Google Scholar PubMed

[3] A.-P. Magiorakos, A. Srinivasan, R. B. Carey, Y. Carmeli, M. E. Falagas, C. G. Giske, S. Harbarth, J. F. Hindler, G. Kahlmeter, B. Olsson-Liljequist, D. L. Paterson, L. B. Rice, J. Stelling, M. J. Struelens, A. Vatopoulos, J. T. Weber, D. L. Monnet. Clin. Microbiol. Infect. 18, 268 (2012), https://doi.org/10.1111/j.1469-0691.2011.03570.x.Search in Google Scholar PubMed

[4] E. Charani, M. Mendelson, S. J. C. Pallett, R. Ahmad, M. Mpundu, O. Mbamalu, C. Bonaconsa, V. Nampoothiri, S. Singh, N. Peiffer-Smadja, V. Anton-Vazquez, L. S. P. Moore, J. Schouten, T. Kostyanev, V. Vlahović-Palčevski, D. Kofteridis, J. S. Corrêa, A. H. Holmes. Lancet Glob. Health 11, 466 (2023), https://doi.org/10.1016/S2214-109X(23)00019-0.Search in Google Scholar PubMed

[5] G. Dantas, M. O. A. Sommer, R. D. Oluwasegun, G. M. Church. Science 320, 100 (2008), https://doi.org/10.1126/science.1155157.Search in Google Scholar PubMed

[6] M. I. Hutchings, A. W. Truman, B. Wilkinson. Curr. Opin. Microbiol. 51, 72 (2019), https://doi.org/10.1016/j.mib.2019.10.008.Search in Google Scholar PubMed

[7] C. Årdal, M. Balasegaram, R. Laxminarayan, D. Adams, K. Outterson, J. H. Rex, N. Sumpradit. Nat. Rev. Microbiol. 18, 267 (2020), https://doi.org/10.1038/s41579-019-0293-3.Search in Google Scholar PubMed

[8] L. Gao, H. Wang, B. Zheng, F. Huang. Giant 7, 100066 (2021), https://doi.org/10.1016/j.giant.2021.100066.Search in Google Scholar

[9] F. Huang, E. V. Anslyn. Chem. Rev. 115, 6999 (2015), https://doi.org/10.1021/acs.chemrev.5b00352.Search in Google Scholar PubMed

[10] P. Ruz, S. Banerjee, R. Khurana, N. Barooah, V. Sudarsan, A. C. Bhasikuttan, J. Mohanty. ACS Appl. Mater. Interfaces 13, 16218 (2021), https://doi.org/10.1021/acsami.0c22213.Search in Google Scholar PubMed

[11] R. Khurana, J. Mohanty, N. Padma, N. Barooah, A. C. Bhasikuttan. Chem. Eur. J. 25, 13939 (2019), https://doi.org/10.1002/chem.201902641.Search in Google Scholar PubMed

[12] M. N. Shinde, N. Barooah, A. C. Bhasikuttan. J. Mohanty. Chem. Commun. 52, 2992 (2016), https://doi.org/10.1039/c5cc10159j.Search in Google Scholar PubMed

[13] N. Barooah, J. Mohanty, A. C. Bhasikuttan. Langmuir 38, 6249 (2022), https://doi.org/10.1021/acs.langmuir.2c00556.Search in Google Scholar PubMed

[14] S. Dutta Choudhury, J. Mohanty, H. Pal, A. C. Bhasikuttan. J. Am. Chem. Soc. 132, 1395 (2010), https://doi.org/10.1021/ja908795y.Search in Google Scholar PubMed

[15] G. Wenz. Clin. Drug Investig. 19, 21 (2012), https://doi.org/10.2165/00044011-200019002-00003.Search in Google Scholar

[16] G. Yu, X. Chen. Theranostics 9, 3041 (2019), https://doi.org/10.7150/thno.31653.Search in Google Scholar PubMed PubMed Central

[17] K. I. Assaf, W. M. Nau. Chem. Soc. Rev. 44, 394 (2015), https://doi.org/10.1039/C4CS00273C.Search in Google Scholar

[18] G. Crini. Chem. Rev. 114, 10940 (2014), https://doi.org/10.1021/cr500081p.Search in Google Scholar PubMed

[19] R. Kumar, A. Sharma, H. Singh, P. Suating, H. S. Kim, K. Sunwoo, I. Shim, B. C. Gibb, J. S. Kim. Chem. Rev. 119, 9657 (2019), https://doi.org/10.1021/acs.chemrev.8b00605.Search in Google Scholar PubMed

[20] T. Ogoshi, T. Yamagishi, Y. Nakamoto. Chem. Rev. 116, 7937 (2016), https://doi.org/10.1021/acs.chemrev.5b00765.Search in Google Scholar PubMed

[21] R. N. Dsouza, U. Pischel, W. M. Nau. Chem. Rev. 111, 7941 (2011), https://doi.org/10.1021/cr200213s.Search in Google Scholar PubMed

[22] D. N. Shurpik, P. L. Padnya, I. I. Stoikov, P. J. Cragg. Molecules 25, 5145 (2020), https://doi.org/10.3390/molecules25215145.Search in Google Scholar PubMed PubMed Central

[23] L. F. Lindoy. in The Chemistry of Macrocyclic Ligand Complexes, Cambridge University Press, Cambridge (1989).10.1017/CBO9780511564376Search in Google Scholar

[24] P. Lehn, J.-M. Dietrich, B. Viout. Macrocyclic Chemistry. Aspects of Organic and Inorganic Supramolecular Chemistry, VCH, Weinheim (1992).Search in Google Scholar

[25] J. W. Steed, J. L. Atwood. in Supramolecular Chemistry, John Wiley & Sons Ltd., West Sussex, UK (2009).10.1002/9780470740880Search in Google Scholar

[26] J. Mohanty, S. Dutta Choudhury, N. Barooah, H. Pal, A. C. Bhasikuttan. Mechanistic aspects of host-guest binding in cucurbiturils: physicochemical properties. In General Principles of Supramolecular Chemistry and Molecular Recognition, Comprehensive Supramolecular Chemistry II, G. W. Gokel, J. L. Atwood (Vol. Eds.), Vol. 1, pp. 435–457, Elsevier (2017).10.1016/B978-0-12-409547-2.11028-5Search in Google Scholar

[27] N. Kandoth, S. Dutta Choudhury, J. Mohanty, A. C. Bhasikuttan, H. Pal. J. Phys. Chem. B 114, 2617 (2010), https://doi.org/10.1021/jp909842z.Search in Google Scholar PubMed

[28] V. S. Kalyani, D. D. Malkhede. J. Mohanty. Phys. Chem. Chem. Phys. 19, 21382 (2017), https://doi.org/10.1039/C7CP01894K.Search in Google Scholar PubMed

[29] D. K. A. Uçar. Smart Nanocontainers, Micro Nano Technol. 105, 105 (2020), https://doi.org/10.1016/B978-0-12-816770-0.00007-1.Search in Google Scholar

[30] D. K. A. Uçar, B. Çabuk. Nanotoxicity, Prev. Antibact. Appl. Nanomater. Micro Nano Technol. (Chapter 21), 415 (2020), https://doi.org/10.1016/B978-0-12-819943-5.00027-0.Search in Google Scholar

[31] J. Szejtli. Cyclodextrins: applications. In Encyclopedia of Supramolecular Chemistry, J. L. Atwood, J. W. Steed (Eds.), Marcel Dekker Inc., New York, pp. 398−413 (2004).10.1081/E-ESMC-120012796Search in Google Scholar

[32] I. Ghosh, W. M. Nau. Adv. Drug Deliv. Rev. 64, 764 (2012), https://doi.org/10.1016/j.addr.2012.01.015.Search in Google Scholar PubMed

[33] P. Shahgaldian. U. Pieles. Sensors 6, 593 (2006), https://doi.org/10.3390/s6060593.Search in Google Scholar

[34] C. C. Bai, B. R. Tian, T. Zhao, Q. Huang, Z. Z. Wang. Molecules 22, 1475 (2017), https://doi.org/10.3390/molecules22091475.Search in Google Scholar PubMed PubMed Central

[35] A. Obaid, A. K. M. Jamil, S. Prabu, S. M. Saharin, S. Mohamad. Spectrochim Acta A: Mol. Biomol. Spectrosc. 241, 118674 (2020), https://doi.org/10.1016/j.saa.2020.118674.Search in Google Scholar PubMed

[36] T. Kappe. J. Incl. Phenom. Macrocycl. Chem. 19, 3 (1994), https://doi.org/10.1007/BF00708971.Search in Google Scholar

[37] A. Zinke, R. Kretz, E. Leggewie, K. Hössinger, G. Hoffman, P. Weber v. Ostwalden. Monatsh. Chem. 83, 1213 (1952), https://doi.org/10.1007/BF00899467.Search in Google Scholar

[38] C. D. Gutsche, B. Dhawan, K. H. No, R. Muthukrishnan. J. Am. Chem. Soc. 13, 3782 (1981), https://doi.org/10.1021/ja00403a028.Search in Google Scholar

[39] A. Jadhav, V. S. Kalyani, N. Barooah, D. D. Malkhede. J. Mohanty. ChemPhysChem 16, 420 (2015), https://doi.org/10.1002/cphc.201402591.Search in Google Scholar PubMed

[40] M. M. Naseer, M. Ahmed, S. Hameed. Chem. Biol. Drug Des. 89, 243 (2017), https://doi.org/10.1111/cbdd.12818.Search in Google Scholar PubMed

[41] F. Perret, A. N. Lazara, A. W. Coleman. Chem. Commun. 23, 2425 (2006), https://doi.org/10.1039/B600720C.Search in Google Scholar PubMed

[42] C. Mehra, R. Gala, A. Kakatkar, V. Kumar, R. Khurana, S. Chatterjee, N. N. Kumar, N. Barooah, A. C. Bhasikuttan. J. Mohanty. Chem. Commun. 55, 14275 (2019), https://doi.org/10.1039/c9cc07378g.Search in Google Scholar PubMed

[43] S. Kellici, J. Acord, A. Vaughn, N. P. Power, D. J. Morgan, T. Heil, S. P. Facq, G. I. Lampronti. ACS Appl. Mater. Interfaces 8, 19038 (2016), https://doi.org/10.1021/acsami.6b06052.Search in Google Scholar PubMed

[44] S. Khalid, S. Parveen, M. R. Shah, S. Rahim, S. Ahmed, M. I. Malik. Arabian. J. Chem. 13, 3988 (2020), https://doi.org/10.1016/j.arabjc.2019.04.007.Search in Google Scholar

[45] I. D. Bari, R. Picciotto, G. Granata, A. R. Blanco, G. M. L. Consoli, S. Sortino. . Org. Biomol. Chem. 14, 8047 (2016), 10.1039/C6OB01305H.10.1039/C6OB01305HSearch in Google Scholar

[46] A. Fraix, D. Afonso, G. M. L. Consoli. S. Sortino. Photochem. Photobiol. Sci. 18, 2216 (2019), https://doi.org/10.1039/c9pp00011a.Search in Google Scholar PubMed

[47] A. Siddharthan, V. Kumar, N. Barooah, S. Chatterjee, A. C. Bhasikuttan. J. Mohanty. J. Mol. Liq. 370, 121047 (2023), https://doi.org/10.1016/j.molliq.2022.121047.Search in Google Scholar

[48] M. Bayrakci, M. Keskinates, B. Yilmaz. Mater. Sci. Eng. C 122, 111895 (2021), https://doi.org/10.1016/j.msec.2021.111895.Search in Google Scholar PubMed

[49] S. V. Patil, S. V. Athare, A. Jagtap, K. M. Kodam, S. P. Gejji, D. D. Malkhede. RSC Adv. 6, 110206 (2016), https://doi.org/10.1039/c6ra23614f.Search in Google Scholar

[50] R. Behrend, E. Meyer, F. Rusche. Adv. Cycloaddit. 339, 1 (1905), https://doi.org/10.1002/jlac.19053390102.Search in Google Scholar

[51] W. A. Freeman, W. L. Mock, N. Y. Shih. J. Am. Chem. Soc. 103, 7367 (1981), https://doi.org/10.1021/ja00414a070.Search in Google Scholar

[52] J. Kim, I.-S. Jung, S.-Y. Kim, E. Lee, J.-K. Kang, S. Sakamoto, K. Yamaguchi, K. Kim. J. Am. Chem. Soc. 122, 540 (2000), https://doi.org/10.1021/ja993376p.Search in Google Scholar

[53] W. L. Mock, N. Y. Shih. J. Org. Chem. 51, 4440 (1986), https://doi.org/10.1021/jo00373a018.Search in Google Scholar

[54] J. W. Lee, S. Samal, N. Salvapalam, H.-J. Kim, K. Kim. Acc. Chem. Res. 36, 621 (2003), https://doi.org/10.1021/ar020254k.Search in Google Scholar PubMed

[55] A. C. Bhasikuttan, H. Pal, J. Mohanty. Chem. Commun. 47, 9959 (2011), https://doi.org/10.1039/C1CC12091C.Search in Google Scholar

[56] R. Khurana, J. Mohanty, N. Barooah, A. C. Bhasikuttan. J. Mol. Liq. 334, 116023 (2021), https://doi.org/10.1016/j.molliq.2021.116023.Search in Google Scholar

[57] S. Dutta Choudhury, J. Mohanty, A. C. Bhasikuttan, H. Pal. J. Phys. Chem. B 114, 10717 (2010), https://doi.org/10.1021/jp1041662.Search in Google Scholar PubMed

[58] Q. Liu, Q. Li, X.-J. Cheng, Y.-Y. Xi, B. Xiao, X. Xiao, Q. Tang, Y. Huang, Z. Tao, S.-F. Xue, Q.-J. Zhu, J.-X. Zhang. Chem. Commun. 51, 9999 (2015), https://doi.org/10.1039/C5CC02653A.Search in Google Scholar

[59] A. Aktanova, T. Abramova, E. Pashkina, O. Boeva, L. Grishina, E. Kovalenko, V. Kozlov. Nanomaterials 11, 1356 (2021), https://doi.org/10.3390/nano11061356.Search in Google Scholar PubMed PubMed Central

[60] X. Zhang, X. Xu, S. Li, L.-H. Wang, J. Zhang, R. Wang. Sci. Rep. 8, 8819 (2018), https://doi.org/10.1038/s41598-018-27206-6.Search in Google Scholar PubMed PubMed Central

[61] G. Hettiarachchi, D. Nguyen, J. Wu, D. Lucas, D. Ma, L. Isaacs, V. Briken. PLoS One 5, 10514 (2010), https://doi.org/10.1371/journal.pone.0010514.Search in Google Scholar PubMed PubMed Central

[62] J. Murray, K. Kim, T. Ogoshi, W. Yaod, B. C. Gibb. Chem. Soc. Rev. 46, 2479 (2017), https://doi.org/10.1039/C7CS00095B.Search in Google Scholar PubMed PubMed Central

[63] F. Ahmadi, Z. Oveisi, S. M. Samani. Z. Amoozgar. Res. Pharm. Sci. 10, 1 (2015).Search in Google Scholar

[64] P. Y. Hao, H. Y. Zhou, L. J. Ren, H. J. Zheng, J. N. Tong, Y. W. Chen, H. J.J. ParkSol-Gel. Sci. Technol. 106, 1 (2023), https://doi.org/10.1007/s10971-023-06097-8.Search in Google Scholar

[65] M. C. Gómez-Guillén, M. Pérez-Mateos, J. Gómez-Estaca, E. López-Caballero, B. Giménez, P. Montero. Trends Food Sci. Technol. 20, 3 (2009), https://doi.org/10.1016/j.tifs.2008.10.002.Search in Google Scholar

[66] J. C. Nunes, P. T. S. Melo, M. V. Lorevice, F. A. Aouada, M. R. de Moura. Food Sci. Technol. 58, 1 (2021), https://doi.org/10.1007/s13197-020-04469-4.Search in Google Scholar PubMed PubMed Central

[67] S. Siddiqua, B. A. Anusha, L. S. Ashwini, P. S. Negi. J. Food Sci. Technol. 52, 5834 (2015), https://doi.org/10.1007/s13197-014-1642-x.Search in Google Scholar PubMed PubMed Central

[68] J. Wu, G. Song, R. Huang, Y. Yan, Q. Li, X. Guo, X. Shi, Y. Tian, J. Wang, S. Wang. Food Chem. 418, 135871 (2023), https://doi.org/10.1016/j.foodchem.2023.135871.Search in Google Scholar PubMed

[69] V. A. Spirescu, C. Chircov, A. M. Grumezescu, B. Ș. Vasile, E. Andronescu. Int. J. Mol. Sci. 22, 4595 (2021), https://doi.org/10.3390/ijms22094595.Search in Google Scholar PubMed PubMed Central

[70] N. Motakef-Kazemia, M. Yaqoubi. Iran J. Pharm. Res. 19, 70 (2020), https://doi.org/10.22037/ijpr.2019.15578.13190.Search in Google Scholar PubMed PubMed Central

[71] J. Alex, T. V. Mathew. Molecules 28, 3604 (2023), https://doi.org/10.3390/molecules28083604.Search in Google Scholar PubMed PubMed Central

[72] D.-Y. Ma, Y.-M. Zhang, J.-N. Xu. Tetrahedron 72, 3105 (2016), https://doi.org/10.1016/j.tet.2016.04.039.Search in Google Scholar

[73] M. N. Shinde, R. Khurana, N. Barooah, A. C. Bhasikuttan. J. Mohanty. J. Phys. Chem. C 121, 20057 (2017), https://doi.org/10.1021/acs.jpcc.7b07286.Search in Google Scholar

[74] V. Kadam, A. S. Kakatkar, N. Barooah, S. Chatterjee, A. C. Bhasikuttan. J. Mohanty. RSC Adv. 10, 25370 (2020), https://doi.org/10.1039/d0ra03823g.Search in Google Scholar PubMed PubMed Central

[75] P. Basu, G. S. Kumar. Adv. Exp. Med. Biol. 928, 155 (2016), https://doi.org/10.1007/978-3-319-41334-1_7.Search in Google Scholar PubMed

[76] R. Khurana, A. S. Kakatkar, S. Chatterjee, N. Barooah, A. Kunwar, A. C. Bhasikuttan, J. Mohanty. Front. Chem.-Supramolecular Chemistry 7, 452 (2019), https://doi.org/10.3389/fchem.2019.00452.Search in Google Scholar PubMed PubMed Central

[77] D. Burgner, K. Rockett, D. Kwiatkowski. Arch. Dis. Child. 81, 185 (1999), https://doi.org/10.1136/adc.81.2.185.Search in Google Scholar PubMed PubMed Central

[78] K. Liu, Y. Liu, Y. Yao, H. Yuan, S. Wang, Z. Wang, X. Zhang. Angew. Chem., Int. Ed. 52, 8285 (2013), https://doi.org/10.1002/anie.201303387.Search in Google Scholar PubMed

[79] L. Chen, H. Bai, J.-F. Xu, S. Wang, X. Zhang. ACS Appl. Mater. Interfaces 9, 13950 (2017), https://doi.org/10.1021/acsami.7b02611.Search in Google Scholar PubMed

[80] M. Özkan, Y. Kumar, Y. Keser, S. E. Hadi, D. Tuncel. ACS Appl. Bio Mater. 2, 4693 (2019), https://doi.org/10.1021/acsabm.9b00763.Search in Google Scholar PubMed

[81] M. Özkan, Y. Keser, S. E. Hadi, D. Tuncel. Eur. J. Org Chem. 2019, 3534 (2019), https://doi.org/10.1002/ejoc.201900278.Search in Google Scholar

[82] H. Bai, H. Yuan, C. Nie, B. Wang, F. Lv, L. Liu, S. Wang. Angew. Chem., Int. Ed. 54, 13208 (2015), https://doi.org/10.1002/anie.201504566.Search in Google Scholar PubMed

[83] Z. Huang, H. Zhang, H. Bai, Y. Bai, S. Wang, X. Zhang. ACS Macro Lett. 5, 1109 (2016), https://doi.org/10.1021/acsmacrolett.6b00568.Search in Google Scholar PubMed

[84] S. Li, K. I. Kuok, X. Ji, A. Xu, H. Yin, J. Zheng, H. Tan, R. Wang. ChemPlusChem 85, 679 (2020), https://doi.org/10.1002/cplu.202000119.Search in Google Scholar PubMed

[85] Y. Yang, P. He, Y. Wang, H. Bai, S. Wang, J.-F. Xu, X. Zhang. Angew. Chem., Int. Ed. 56, 16239 (2017), https://doi.org/10.1002/anie.201708971.Search in Google Scholar PubMed

[86] Y.-R. Ruan, W.-Z. Li, Y.-Y. Ye, J. Luo, S.-Y. Xu, J. Xiao, X.-W. Lin, S. Liu, X.-Q. Wang, W. Wang. J. Colloid Interface Sci. 641, 146 (2023), https://doi.org/10.1016/j.jcis.2023.03.009.Search in Google Scholar PubMed

[87] H. S. El-Sheshtawy, S. Chatterjee, K. I. Assaf, M. N. Shinde, W. M. Nau. J. Mohanty. Sci. Rep. 8, 13925 (2018), https://doi.org/10.1038/s41598-018-32312-6.Search in Google Scholar PubMed PubMed Central

[88] E. Jiménez-Lozano, I. Marqués, D. Barrón, J. L. Beltrán, J. Barbosa. Anal. Chim. Acta 464, 37 (2002), https://doi.org/10.1016/S0003-2670(02)00435-X.Search in Google Scholar

Published Online: 2023-11-10
Published in Print: 2024-01-29

© 2023 IUPAC & De Gruyter

Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2023-1002/html
Scroll to top button