A critical review of the quantification, analysis and detection of radionuclides in the environment using diffusive gradients in thin films (DGT): advances and perspectives
Abstract
This critical review explores the quantification, analysis, and detection of radionuclides in the environment using the diffusive gradients in thin films (DGT) technique. Radionuclides, unstable isotopes emitting ionising radiation, are present in the environment due to natural and anthropogenic sources for which concerns are raised about their impact on human health and ecosystems. DGT offers a unique passive sampling approach for understanding the behaviour of radionuclides and other trace elements. This review provides insights into method development, real case scenarios, advantages, limitations, and future perspectives of DGT in radionuclide analysis. In terms of method development, various isotopes have been analysed with varying significance based on origin, concentration, risks, and persistence. Notably, U, Th, Pu, Am, Cm, 99Tc, 226Ra, 137Cs, 134Cs, 232U, 237Np, and 152Eu have been measured, revealing their diverse roles in environmental radioactivity. Real case scenarios illustrate applications in uranium mining, water quality monitoring, and metal speciation studies, shedding light on mobility, bioavailability, and ecological impacts. DGT’s advantages include in-situ monitoring, time-averaged mean concentrations, and comprehensive speciation insights. Challenges include potential influences from biofouling, temperature changes and specifically the possible degradation of the binding and diffuse layer due to ionising radiation in long term exposures. In addition, the distinction between fully labile free metal ions and partially labile metal-ligand complexes introduces a potential limitation in the DGT technique, hence being an opportunity for future studies. Looking forward, DGT is expected to contribute to radiation dose modelling, environmental risk assessment, and water quality monitoring, with ongoing developments enhancing its utility and accuracy.
References
[1] (US) NRC. Natural Radioactivity and Radiation, National Academies Press, Washington (1999).Suche in Google Scholar
[2] H. Qin-Hong, W. Jian-Qing, W. Jin-Sheng. J. Environ. Radioact. 101, 426 (2010), https://doi.org/10.1016/j.jenvrad.2008.08.004.Suche in Google Scholar PubMed
[3] B. G. Fritz, G. W. Patton. J. Environ. Radioact. 86, 64 (2006), https://doi.org/10.1016/j.jenvrad.2005.07.006.Suche in Google Scholar PubMed
[4] M. Belli, L. Indovina. Front. Public Health 8, 601711 (2020), https://doi.org/10.3389/fpubh.2020.601711.Suche in Google Scholar PubMed PubMed Central
[5] K. Hirose. J. Environ. Radioact. 218 (2020), https://doi.org/10.1016/j.jenvrad.2020.106240.Suche in Google Scholar PubMed
[6] G. J. P. Deblonde, A. B. Kersting, M. Zavarin. Commun. Chem. 3, 167 (2020), https://doi.org/10.1038/s42004-020-00418-6.Suche in Google Scholar PubMed PubMed Central
[7] B. Salbu, V. Kashparov, O. C. Lind, R. Garcia-Tenorio, M. P. Johansen, D. P. Child. J. Environ. Radioact. 186, 101 (2018), https://doi.org/10.1016/j.jenvrad.2017.09.001.Suche in Google Scholar PubMed
[8] H. G. Paretzke, Deluca, A. Wambersie. J. ICRU 6, 1 (2006); ICRU Report 75, https://doi.org/10.1093/jicru_ndl005.Suche in Google Scholar
[9] I. Koraltan, O. Guven, F. O. Asri, O. Aktas, E. Aksoy, G. Yaprak, I. Boztosun, S. F. Ozmen. Eur. Phys. J. Spec. Top. 232, 1583–1593 (2023), https://doi.org/10.1140/epjs/s11734-023-00884-8.Suche in Google Scholar
[10] B. Salbu. J. Environ. Radioact. 100, 1086 (2009), https://doi.org/10.1016/j.jenvrad.2009.04.005.Suche in Google Scholar PubMed
[11] W. Davison, H. Zhang. Nature 367, 546 (1994), https://doi.org/10.1038/367546a0.Suche in Google Scholar
[12] A. A. Menegário, L. N. M. Yabuki, K. S. Luko, P. N. Williams, D. M. Blackburn. Anal. Chim. Acta 29(983), 54 (2017), https://doi.org/10.1016/j.aca.2017.06.041.Suche in Google Scholar PubMed
[13] W. Davison. Diffusive Gradients in Thin-Films for Environmental Measurements, Cambridge University Pres, Cambridge (2016).10.1017/CBO9781316442654Suche in Google Scholar
[14] C. Zhang, S. Ding, D. Xu, Y. Tang, M. H. Wong. Environ. Monitor. Assessment 186, 7367 (2014), https://doi.org/10.1007/s10661-014-3933-0.Suche in Google Scholar PubMed
[15] X. Ji, J. K. Challis, M. Brinkmann. Chemosphere 287(3), 132352 (2022), https://doi.org/10.1016/j.chemosphere.2021.132352.Suche in Google Scholar PubMed
[16] W. Davison, H. Zhang. Environ. Chem. 9(1), 1 (2011), https://doi.org/10.1071/en11084.Suche in Google Scholar
[17] M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow. BMJ, 372 (2021).Suche in Google Scholar
[18] G. S. C. Turner, G. A. Mills, M. J. Bowes, J. L. Burnett, S. Amos, G. R. Fones. Environ. Sci.: Processes Impacts 16(393), 393 (2014), https://doi.org/10.1039/c3em00574g.Suche in Google Scholar PubMed
[19] B. N. Vyas, K. B. Mistry. Plant Soil 75, 59.10.1007/BF02183593Suche in Google Scholar
[20] G. Sokolik, S. Ovsiannikova, I. Kimlenko. Am. Radioprotection. 37, 283 (2002).10.1051/radiopro/2002053Suche in Google Scholar
[21] S. Mongin, R. Uribe, J. Puy, J. Cecília, J. Galceran, H. Zhang, W. Davison. Environ. Sci. Technol. 45, 4869 (2011), https://doi.org/10.1021/es200609v.Suche in Google Scholar PubMed
[22] V. E. dos Anjos, G. Abate, M. T. Grassi. Anal. Bioanal. Chem. 409, 1963 (2017), https://doi.org/10.1007/s00216-016-0144-2.Suche in Google Scholar PubMed
[23] A. Stockdale, N. D. Bryan. Environ. Sci. 15, 1087 (2013), https://doi.org/10.1039/c3em00088e.Suche in Google Scholar PubMed
[24] C. M. Hutchins, J. G. Panther, P. R. Teasdale, F. Wang, R. R. Stewart, W. W. Bennett, H. Zao Talanta 97, 550 (2012), https://doi.org/10.1016/j.talanta.2012.05.012.Suche in Google Scholar PubMed
[25] J. Zhaoa, R. J. Cornett, C. L. Chakrabarti. J. Hazard. Mater. 384 (2020), https://doi.org/10.1016/j.jhazmat.2019.121134.Suche in Google Scholar PubMed
[26] S. C. T. Turner, G. A. Mills, J. L. Burnett, S. Amos, G. R. Fones. Anal. Chim. Acta 854, 78 (2015), https://doi.org/10.1016/j.aca.2014.11.023.Suche in Google Scholar PubMed
[27] M. A. French, H. Zhang, J. M. Pates, S. E. Bryan, R. C. Wilson. Anal. Chem. 77(1), 135 (2005), https://doi.org/10.1021/ac048774b.Suche in Google Scholar PubMed
[28] A. Martin, C. Landesman, A. Lépinay, C. Roux, J Champion, P Chardon, G. Montavon. J. Environ. Radioact. 208–209 (2019), https://doi.org/10.1016/j.jenvrad.2019.106010.Suche in Google Scholar PubMed
[29] J. Drozdzak, M. Leermakers, Y. Gao, V. Phrommavanh, M. Descostes. Anal. Chim. Acta 889, 71 (2015), https://doi.org/10.1016/j.aca.2015.07.057.Suche in Google Scholar PubMed
[30] J. Drozdzak, M. Leermakers, Y. Gao, V. Phrommavanh, M. Descostes. Environ. Pollut. 214, 114 (2016), https://doi.org/10.1016/j.envpol.2016.04.004.Suche in Google Scholar PubMed
[31] C. Vogel, M. C. Hoffmann, M. C. Taube, O. Krüger, R. Baran. J. Hazard. Mater. 382 (2020), https://doi.org/10.1016/j.jhazmat.2019.121100.Suche in Google Scholar PubMed
[32] P. Byrne, C. C. Fuller, D. L. Naftz, R. L. Runkel, N. J. Lehto, W. L. Dam. Sci. Total Environ. 761 (2021).10.1016/j.scitotenv.2020.143314Suche in Google Scholar PubMed
[33] J. D. Chaplin, Christl, M. Straub, F. Bochud, P. Froidevaux. ACS Omega 7, 20053 (2022), https://doi.org/10.1021/acsomega.2c01884.Suche in Google Scholar PubMed PubMed Central
[34] J. D. Chaplin, M. Christl, A. B. Cundy, P. E. Warwick, D. G. Reading, F. Bochud, P. Froidevaux. Water Res. 221 (2022), https://doi.org/10.1016/j.watres.2022.118838.Suche in Google Scholar PubMed
[35] J. D. Chaplin, M. Christl, A. B. Cundy, P. E. Warwick, P. Gaca, F. Bochud, P. Froidevaux. ACS ES T Water 2, 1688 (2022), https://doi.org/10.1021/acsestwater.2c00194.Suche in Google Scholar PubMed PubMed Central
[36] J. D. Chaplin, P. E. Warwick, A. B. Cundy, F. Bochud, P. Froidevaux. Anal. Chem. 93(35), 11937 (2021), https://doi.org/10.1021/acs.analchem.1c01342.Suche in Google Scholar PubMed
[37] V. Smolíková, P. Pelcová, A. Ridošková, M. Leermakers. Talanta 240 (2022), https://doi.org/10.1016/j.talanta.2021.123168.Suche in Google Scholar PubMed
[38] A. Husson, M. Leermakers, M. Descostes, V. Lagneau. Chemosphere 236, 124341 (2019), https://doi.org/10.1016/j.chemosphere.2019.124341.Suche in Google Scholar PubMed
[39] R. Cusnir, P. Steinmann, M. Christl, F. Bochud, P. Froidevaux. Jove 105 (2015), https://doi.org/10.3791/53188-v.Suche in Google Scholar
[40] V. Smolíková, P. Pelcová, A. Ridošková, M. Leermakers. Talanta 228 (2021), https://doi.org/10.1016/j.talanta.2021.122234.Suche in Google Scholar PubMed
[41] A. Martin, G. Montavon, C. Landesman. Chemosphere, 279 (2021).10.1016/j.chemosphere.2021.130526Suche in Google Scholar PubMed
[42] W. Li, C. Li, J. Zhao, R. J. Cornett. Anal. Chim. Acta 592(1), 106 (2007), https://doi.org/10.1016/j.aca.2007.04.012.Suche in Google Scholar PubMed
[43] M. Gregusova, B. Docekal. Anal. Chim. Acta 763, 50 (2013), https://doi.org/10.1016/j.aca.2012.12.001.Suche in Google Scholar PubMed
[44] H. Gemeiner, A. A. Menegário, P. N. Williams, A. E. Matavelli Rosa, C. A. Santos, J. H. Pedrobom, L. P. Elias, H. K. Chang. Environ. Sci. Pollut. Res. 28, 57149 (2021), https://doi.org/10.1007/s11356-021-14605-y.Suche in Google Scholar PubMed
[45] M. Gregusova, B. Docekal. Anal. Chim. Acta 684(1–2), 142 (2011), https://doi.org/10.1016/j.aca.2010.11.002.Suche in Google Scholar PubMed
[46] R. Cusnir, P. Steinmann, F. Bochud, P. Froidevaux. Environ. Sci. Technol. 48(18), 10829 (2014), https://doi.org/10.1021/es501149v.Suche in Google Scholar PubMed
[47] H. Vandenhove, K. Antunes, J. Wannijn, L. Duquène, M. Van Hees. Sci. Tot. Environ. 373(2–3), 542 (2007), https://doi.org/10.1016/j.scitotenv.2006.12.023.Suche in Google Scholar PubMed
[48] B. Docekal, M. Gregusova. Analyst 137(502), 502 (2012), https://doi.org/10.1039/c1an15701a.Suche in Google Scholar PubMed
[49] L. Duquène, H. Vandenhove, F. Tack, M. Van Hees, J. Wannijn. J. Environ. Radioact. 101(2), 140 (2010), https://doi.org/10.1016/j.jenvrad.2009.09.007.Suche in Google Scholar PubMed
[50] G. S. C. Turner, G. A. Mills, P. R. Teasdale, J. L. Burnett, S. Amos, G. R. Fones. Anal. Chim. Acta 739, 37 (2012), https://doi.org/10.1016/j.aca.2012.06.011.Suche in Google Scholar PubMed
[51] J. H. Pedrobom, C. E. Eismann, A. A. Menegário, J. A. Galhardi, K. S. Luko, T. A. Dourado. Chemosphere 169, 249 (2017), https://doi.org/10.1016/j.chemosphere.2016.11.082.Suche in Google Scholar PubMed
[52] W. Li, J. Zhao, C. Li, S. Kiser, R. J. Cornett. Anal. Chim. Acta 575(2), 274 (2006), https://doi.org/10.1016/j.aca.2006.05.092.Suche in Google Scholar PubMed
[53] J. Drozdzak, M. Leermakers, Y. Gao, M. Elskens, V. Phrommavanh, M. Descostes. Anal. Chim. Acta 913, 94 (2016), https://doi.org/10.1016/j.aca.2016.01.052.Suche in Google Scholar PubMed
[54] M. Leermakers, V. Phrommavanh, J. Drozdzak, Y. Gao, J. Nos, M. Descostes. Chemosphere 155, 142 (2016), https://doi.org/10.1016/j.chemosphere.2016.03.138.Suche in Google Scholar PubMed
[55] J. A. Galhardi, J. M. V. de Mello, K. J. Wilkinson. Chemosphere 261 (2020).10.1016/j.chemosphere.2020.127679Suche in Google Scholar PubMed
[56] W. Li, F. Wang, W. Zhang, D. Evans. Anal. Chem. 81(14), 5889 (2009), https://doi.org/10.1021/ac9005974.Suche in Google Scholar PubMed
[57] C. Murdock, M. Kelly, L. Y. Chang, W. Davison, H. Zhang. Environ. Sci. Technol. 35(22), 4530 (2001), https://doi.org/10.1021/es0100874.Suche in Google Scholar PubMed
[58] R. Cusnir, M. Jaccard, C. Bailat, M. Christl, P. Steinmann, M. Haldimann. Environ. Sci. Technol. 50(10), 5103 (2016), https://doi.org/10.1021/acs.est.5b05435.Suche in Google Scholar PubMed
[59] Y. Gao, W. Baeyens, S. De Galan, A. Poffijn, M. Leermakers. Environ. Pollut. 158(7), 2439 (2010), https://doi.org/10.1016/j.envpol.2010.03.022.Suche in Google Scholar PubMed
© 2023 IUPAC & De Gruyter
Artikel in diesem Heft
- Frontmatter
- Editorial
- The Global Scenario and Challenges of Radioactive Waste in the Marine Environment
- Special topic papers
- A critical review of the quantification, analysis and detection of radionuclides in the environment using diffusive gradients in thin films (DGT): advances and perspectives
- Overview of marine radionuclides from sampling to monitoring
- Radionuclides in marine sediment
- Speciation and mobility of uranium isotopes in the Shu River: impacts for river to sea transfer
- Impact of fluvial discharge on 137Cs in the ocean following the Fukushima Daiichi Nuclear Power Station accident
- Transport of radioactive materials from terrestrial to marine environments in Fukushima over the past decade
- The transfer of irradiated uranium from the Irish Sea coast to the terrestrial environment in Cumbria, UK
- Public knowledge, sentiments, and perceptions of low dose radiation (LDR) and power production, with special reference to reactor accidents
- An exercise-based international polymer syllabus
- Conference paper
- Perovskite: a key structure for a sustainable hydrogen economy
Artikel in diesem Heft
- Frontmatter
- Editorial
- The Global Scenario and Challenges of Radioactive Waste in the Marine Environment
- Special topic papers
- A critical review of the quantification, analysis and detection of radionuclides in the environment using diffusive gradients in thin films (DGT): advances and perspectives
- Overview of marine radionuclides from sampling to monitoring
- Radionuclides in marine sediment
- Speciation and mobility of uranium isotopes in the Shu River: impacts for river to sea transfer
- Impact of fluvial discharge on 137Cs in the ocean following the Fukushima Daiichi Nuclear Power Station accident
- Transport of radioactive materials from terrestrial to marine environments in Fukushima over the past decade
- The transfer of irradiated uranium from the Irish Sea coast to the terrestrial environment in Cumbria, UK
- Public knowledge, sentiments, and perceptions of low dose radiation (LDR) and power production, with special reference to reactor accidents
- An exercise-based international polymer syllabus
- Conference paper
- Perovskite: a key structure for a sustainable hydrogen economy