Abstract
To commemorate the centenary of the birth of modern polymer science, a review of the life and accomplishments of Hermann Staudinger is given within the framework of the first half of the twentieth century. Staudinger is remembered for his discovery of ketenes and the Staudinger reaction, but his greatest contribution to chemistry was in developing the concept of macromolecules, for which he received the Nobel Prize in 1953.
References
[1] https://en.wikipedia.org/wiki/Hans_Staudinger.Search in Google Scholar
[2] https://www.famousscientists.org/hermann-staudinger/.Search in Google Scholar
[3] H. Staudinger. Chem. Ber. 39, 3062 (1906). As described in Thomas T. Tidwell, Ketenes II, Wiley & Sons, Hoboken, NJs, (2005), https://doi.org/10.1002/cber.190603903120.Search in Google Scholar
[4] H. Staudinger. Ber. Dtsch. Chem. Ges. 38, 1735 (1905), https://doi.org/10.1002/cber.19050380283.Search in Google Scholar
[5] R. Mühlhaupt. Angew. Chem. Int. Ed. 43, 1054 (2004).10.1002/anie.200330070Search in Google Scholar
[6] H. Staudinger, H. W. Klever. Ber. Dtsch. Chem. Ges. 44, 2212 (1911). Patent on the preparation of 1,3-dienes by pyrolysis of 6-membered rings, e.g. isoprene from limonene, https://doi.org/10.1002/cber.19110440335.Search in Google Scholar
[7] H. Staudinger. DRP 257 640 (1910).Search in Google Scholar
[8] H. Staudinger. DRP 264 923 (1911).Search in Google Scholar
[9] H. Staudinger, J. Meyer. Helv. Chim. Acta 2, 635 (1919), https://doi.org/10.1002/hlca.19190020164.Search in Google Scholar
[10] H. Staudinger, E. Hauser. Helv. Chim. Acta 4, 861 (1921), https://doi.org/10.1002/hlca.19210040192.Search in Google Scholar
[11] Y. G. Gololobov, I. N. Zhmurova, L. F. Kasukhin. Tetrahedron 37, 437 (1981), https://doi.org/10.1016/s0040-4020(01)92417-2.Search in Google Scholar
[12] S. Eguchi. ARKIVOC (ii) 98-119 (2005), available at, http://www.arkat-usa.org/get-file/19558.10.3998/ark.5550190.0006.208Search in Google Scholar
[13] C. I. Schilling, N. Jung, M. Biskup, U. Schepers, S. Bräse. Chem. Soc. Rev. 40, 4840 (2011), https://doi.org/10.1039/c0cs00123f.Search in Google Scholar PubMed
[14] H. Staudinger, Z. Angew. Inside Chem. 35, 657 (1922), https://doi.org/10.1002/ange.19220359302.Search in Google Scholar
[15] H. Staudinger, Z. Elektro. Inside Chem. 31, 549 (1925).Search in Google Scholar
[16] H. Staudinger. Schweizer Patent P.94436 (1919), priority March 30, 1916.Search in Google Scholar
[17] H. Staudinger. DRP 384295 (1920), Hungarian priority October 10, 1916.Search in Google Scholar
[18] H. Staudinger. (Internationale Nahrungs-und Genussmittel AG), EP246454 (1926).Search in Google Scholar
[19] H. Staudinger. (Internationale Nahrungs- und Genussmittel AG), EP286152 (1927).Search in Google Scholar
[20] H. Staudinger. DRP 457 266 (1925).Search in Google Scholar
[21] H. Staudinger, T. Reichstein. (Internationale Nahrungs und Genussmittel AG), AP 4448/1926 (1926).Search in Google Scholar
[22] H. Staudinger, T. Reichstein. AP 1715795 (1927).Search in Google Scholar
[23] T. Reichstein, H. Staudinger. Angew. Chem. 62, 292 (1950).10.1002/ange.19500621206Search in Google Scholar
[24] T. Reichstein, H. Staudinger. Experientia 6, 280 (1950), https://doi.org/10.1007/bf02153688.Search in Google Scholar
[25] T. Reichstein, H. Staudinger. Ciba Z. 127, 4692 (1951).Search in Google Scholar
[26] H. Staudinger. DRP 436 442 (1924).10.1002/hlca.19240070149Search in Google Scholar
[27] H. Staudinger. DRP 451 731 (1924).Search in Google Scholar
[28] H. Staudinger. DRP 436 442 (1924).10.1002/hlca.19240070149Search in Google Scholar
[29] H. Staudinger. DRP 451 731 (1924).Search in Google Scholar
[30] H. Staudinger. Ber. Dtsch. Chem. Ges. 53, 1073 (1920), https://doi.org/10.1002/cber.19200530627.Search in Google Scholar
[31] H. Staudinger, J. Fritschi. Helv. Chim. Acta 5, 785 (1922), https://doi.org/10.1002/hlca.19220050517.Search in Google Scholar
[32] S. S. Pickles. J. Chem. Soc. 1085 (1910).10.1039/CT9109701085Search in Google Scholar
[33] E. Fischer. Ber. Dtsch. Chem. Ges. 40, 1754 (1907), https://doi.org/10.1002/cber.19070400273.Search in Google Scholar
[34] E. Fischer. Ber. Dtsch. Chem. Ges. 46, 3288 (1913), https://doi.org/10.1002/cber.191304603109.Search in Google Scholar
[35] T. Graham. Trans. Roy. Soc. Lond. 15, 183 (1861).Search in Google Scholar
[36] W. Ostwald. Kolloid. Z. 1, 331 (1907).10.1007/BF01813605Search in Google Scholar
[37] H. Hlasiwetz, J. Habermann. Ann. Chem. Pharm. 159 (1871), https://doi.org/10.1002/jlac.18711590303.Search in Google Scholar
[38] F. M. Raoult. Compt. Rend. 95, 1030 (1882).Search in Google Scholar
[39] J. H. van’t Hoff. Z. Phys. Chem. 1, 481 (1887).10.1515/zpch-1887-0151Search in Google Scholar
[40] J. H. van’t Hoff. Phys. Mag. 26, 81 (1888).10.1080/14786448808628243Search in Google Scholar
[41] F. Musculus, A. Meyer. Bull. Soc. Chim. France 35, 370 (1881).Search in Google Scholar
[42] H. T. Brown, G. H. Morris. J. Chem. Soc. 53, 610 (1888), 55, 465 (1889), https://doi.org/10.1039/ct8885300610.Search in Google Scholar
[43] E. Paterno. Z. Phys. Chem. 4, 457 (1889).Search in Google Scholar
[44] C. O. Weber. The Chemistry of India Rubber, p. 48, Charles Griffin & Co., London (1902).Search in Google Scholar
[45] J. J. Berzelius. Jahresbericht über d. Fortschritte d. physikalische Wissenschaft 12, 63 (1833).Search in Google Scholar
[46] M. Bertholet, Die chemische Synthese, Leipzig, (1877) p. 62 ff.Search in Google Scholar
[47] M. Bertholet. Bull. Soc. Chim. (Paris) 2nd Ser. 6, 289 (1866).Search in Google Scholar
[48] D. Braun. Chemie in unserer Zeit 46, 310 (2012), https://doi.org/10.1002/ciuz.201200566.Search in Google Scholar
[49] H. Stobbe, G. Posniak. Ann 371, 259 (1910).10.1002/jlac.19093710302Search in Google Scholar
[50] S. Lebedev, N. A. Skavronskaya. J. Russ. Phys. Chem. Soc. 43, 1124 (1911).Search in Google Scholar
[51] C. Harris. Ann. Chem. 395, 211 (1913).10.1002/jlac.19133950204Search in Google Scholar
[52] S. V. Lebedev, B. K. Merezhkovskii. J. Russ. Phys. Chem. Soc. 45, 1249 (1913).Search in Google Scholar
[53] S. V. Lebedev. J. Russ. Phys. Chem. Soc. 45, 1296 (1913).Search in Google Scholar
[54] S. V. Lebedev. Chem. Abstracts 9, 798 (1915).10.1126/science.42.1092.798.aSearch in Google Scholar
[55] H. Staudinger, M. Lüthy. Helv. Chim. Acta 8, 41 (1925), https://doi.org/10.1002/hlca.19250080111.Search in Google Scholar
[56] H. Staudinger. Helv. Chim. Acta 8, 67 (1925), https://doi.org/10.1002/hlca.19250080114.Search in Google Scholar
[57] https://www.nobelprize.org/uploads/2018/06/staudinger-lecture.pdf.Search in Google Scholar
[58] R. J. Young, P. A. Lovell. Introduction to Polymers, p. 278, CRC, Boca Raton, 3rd ed. (2011).10.1201/9781439894156Search in Google Scholar
[59] T. Svedberg, R. Fahreus. JACS 48, 430 (1926), https://doi.org/10.1021/ja01413a019.Search in Google Scholar
[60] E. O. Kraemer, W. Lansing. JACS 55, 4319 (1933), https://doi.org/10.1021/ja01337a079.Search in Google Scholar
[61] E. O. Kraemer, W. Lansing. J. Phys. Chem. 39, 153 (1935), https://doi.org/10.1021/j150362a001.Search in Google Scholar
[62] R. Signer, H. Gross. Helv. Chim. Acta 17, 59 (1934).10.1002/hlca.19340170112Search in Google Scholar
[63] R. Signer, H. Gross. Helv. Chim. Acta 17, 335 (1934), https://doi.org/10.1002/hlca.19340170139.Search in Google Scholar
[64] R. Signer, H. Gross. Helv. Chim. Acta 17, 726 (1934), https://doi.org/10.1002/hlca.19340170188.Search in Google Scholar
[65] E. Fischer. Ber. Dtsch. Chem. Ges. 40, 1754 (1907), https://doi.org/10.1002/cber.19070400273.Search in Google Scholar
[66] H. Morawetz. Angew. Chem. 99, 95 (1987), https://doi.org/10.1002/ange.19870990204.Search in Google Scholar
[67] H. Staudinger, W. Heuer. Ber. Dtsch. Chem. Ges. 63, 222 (1930), https://doi.org/10.1002/cber.19300630129.Search in Google Scholar
[68] E. O. Kraemer. Ind. Eng. Chem. 30, 1200 (1938), https://doi.org/10.1021/ie50346a023.Search in Google Scholar
[69] M. L. Huggins. J. Am. Chem. Soc. 64, 2716 (1942), https://doi.org/10.1021/ja01263a056.Search in Google Scholar
[70] G. V. Schulz, F. Blaschke. J. Prakt. Chem. 158, 130 (1941), https://doi.org/10.1002/prac.19411580112.Search in Google Scholar
[71] K. H. Meyer. Kolloid – Z. 53, 8 (1930).10.1007/BF01484753Search in Google Scholar
[72] L. Onsager. Phys. Rev. A. 40, 1028 (1932).Search in Google Scholar
[73] E. Guth, H. Mark. Ergebn. Exakt. Naturw. 113 (1933).Search in Google Scholar
[74] I. Sakurada. Proc. Congr. Nippon Kagaku Seni Kenkuyu-sho 5, 33 (1940).Search in Google Scholar
[75] T. Saegusa. Macromol. Symp. 98, 1199 (1995), https://doi.org/10.1002/masy.199509801108.Search in Google Scholar
[76] H. Mark. in Der feste Körper, R. Sänger (Eds.), Hirzel, Leipzig (1938).Search in Google Scholar
[77] R. Houwink. J. Prakt. Chem. 157, 15 (1940), https://doi.org/10.1002/prac.19401570102.Search in Google Scholar
[78] A. Einstein. Ann. Phys. 19, 289 (1906), https://doi.org/10.1002/andp.19063240204.Search in Google Scholar
[79] A. Einstein. Ann. Phys. 34, 591 (1911), https://doi.org/10.1002/andp.19113390313.Search in Google Scholar
[80] P. J. Flory. Principles of Polymer Chemistry, p. 606, Cornell University Press, Ithaca (1953).Search in Google Scholar
[81] W. Kuhn. Kolloid Z. 68, 2 (1934), https://doi.org/10.1007/bf01451681.Search in Google Scholar
[82] B. H. Zimm. J. Chem. Phys. 24, 269 (1956), https://doi.org/10.1063/1.1742462.Search in Google Scholar
[83] J. G. Kirkwood, J. Riseman. J. Chem. Phys. 16, 565 (1948), https://doi.org/10.1063/1.1746947.Search in Google Scholar
[84] P. J. Flory. Principles of Polymer Chemistry, p. 622, Cornell University Press, Ithaca (1953).Search in Google Scholar
[85] M. L. Huggins. J. Am. Chem. Soc. 64, 2716 (1942), https://doi.org/10.1021/ja01263a056.Search in Google Scholar
[86] P. E. Rouse. J. Chem. Phys. 21, 1272 (1953), https://doi.org/10.1063/1.1699180.Search in Google Scholar
[87] P. Muller. Pure Appl. Chem. 66, 1078 (1994), https://doi.org/10.1351/pac199466051077.Search in Google Scholar
[88] G. P. Moss. Pure Appl. Chem. 68, 2195 (1996), https://doi.org/10.1351/pac199668122193.Search in Google Scholar
[89] H. Staudinger. Die hochmolekularen organischen Verbindungen – Kautschuk und Cellulose, p. 164, Springer, Berlin (1932).10.1007/978-3-642-92284-8Search in Google Scholar
[90] A. Fredgas. Presentation Speech. http://www.nobelprize.org./prizes/chemistry/1953/ceremony-speech/.Search in Google Scholar
[91] U. Deichmann. Flüchten, Mitmachen, Vergessen – Chemiker und Biochemiker in der NS- Zeit, Wiley VCH, Weinheim (2001).10.1002/3527603026Search in Google Scholar
[92] G. Deußling, M. Weber. Das Leben des Hermann Staudinger k-online (2012), Teil 3 Hermann Staudinger: Pazifist, Nazi, Judenbeschützer, Antisemit? Badische Zeitung 7 (2017), https://www.badische-zeitung.de/freiburg/hermann-staudinger-pazifist-nazi-judenbeschuetzer-antisemit--135423527.html.Search in Google Scholar
© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Celebrating a centenary of macromolecules
- Invited papers
- Hermann Staudinger – Organic chemist and pioneer of macromolecules
- On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century
- Dielectric properties of processed cheese
- Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling
- Mitigating the charge trapping effects of D-sorbitol/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer blend contacts to crystalline silicon
- Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
- Leveraging diversity and inclusion in the polymer sciences: the key to meeting the rapidly changing needs of our world
- Preface
- The virtual conference on chemistry and its applications, VCCA-2020, 1–31 August 2020
- Conference papers
- Effect of non-competitive inhibitors of aminopeptidase N on viability of human and murine tumor cells
- Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by in silico methods
- Maximizing student learning through the use of demonstrations
- Molecular spaces and the dimension paradox
- Reaction of •OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant
- In silico study of the synergistic anti-tumor effect of hybrid topoisomerase-HDAC inhibitors
- Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Celebrating a centenary of macromolecules
- Invited papers
- Hermann Staudinger – Organic chemist and pioneer of macromolecules
- On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century
- Dielectric properties of processed cheese
- Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling
- Mitigating the charge trapping effects of D-sorbitol/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer blend contacts to crystalline silicon
- Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
- Leveraging diversity and inclusion in the polymer sciences: the key to meeting the rapidly changing needs of our world
- Preface
- The virtual conference on chemistry and its applications, VCCA-2020, 1–31 August 2020
- Conference papers
- Effect of non-competitive inhibitors of aminopeptidase N on viability of human and murine tumor cells
- Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by in silico methods
- Maximizing student learning through the use of demonstrations
- Molecular spaces and the dimension paradox
- Reaction of •OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant
- In silico study of the synergistic anti-tumor effect of hybrid topoisomerase-HDAC inhibitors
- Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities