Is hydrogen electronegativity higher than Pauling’s value? New clues from the 13C and 29Si NMR chemical shifts of [CHF3] and [SiHF3] molecules
Abstract
We previously demonstrated that the δ NMR chemical shift of central NMR active atoms (A), in simple halido [AXn] (A=C, Si, Ge, Sn, Pb, Pt; Xn = combination of n halides, n = 4 or 6) derivatives, could be directly related to X radii overall sum, Σ(rL). Further correlation have also been observed for tetrahedral [AX4] (A=C, Si; X4 = combination of four halides) compounds where the X Pauling electronegativities sum,
Introduction
The effect of mono-atomic L ligands, on the NMR chemical shift of the central A in [ALn] (A=NMR active atom; L=generic monoatomic ligand) complexes, is of great interest [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25]. At this regard, in the case of simple halido substituents Normal and Inverse Halogen Dependences (NHD and IHD, respectively), are generally observed. This corresponds in the NHD case, to a NMR chemical shift decrease of the central A, on increasing the steric hindrance of monoatomic ligands, vice-versa with IHD trends [3], [26], [27], [28], [29], [30], [31], [32], [33]. Theoretical approaches provided a definitive explanation for both trends, at a fundamental level [18], [19], [20], [21]. Nevertheless, in our previous work on halido derivatives of platinum and XIV group elements, we could relate both NHD and IHD trends, with the less fundamental but widely used chemico-physical parameters: rL (ionic radius) and
Following our previous works on tetrahedral [AX4] and [AH4] (A=C, Si; X4=combination of four halides) tetrahalido and tetrahydrido compounds (Fig. 1, Tables S1, S2) [34], [35], in this work we decided to extend our studies to the literature reported 13C and 29Si NMR chemical shifts of partially hydrogenated [AHmXn] (A=C, Si; Xn=combination of n Cl and/or F halides; m+n=4;
![Fig. 1: General structures of the considered [AX4] (A=C, Si; X4=combination of four halides) and [AHmXn] (A=C, Si; Xn=combination of n Cl and/or F halides; m+n=4) halomethane and halosilane derivatives, with atomic substituents and Pauling’s electronegativities overall sum, Σ(χLPau), ≥12.4.$\Sigma (\chi _L^{{\rm{Pau}}}),{\rm{ }} \ge 12.4.$ Generic halides, H, Cl, F, C and Si atoms are indicated in red, grey, green, blue, black and grey-blue, respectively.](/document/doi/10.1515/pac-2019-0202/asset/graphic/j_pac-2019-0202_fig_001.jpg)
General structures of the considered [AX4] (A=C, Si; X4=combination of four halides) and [AHmXn] (A=C, Si; Xn=combination of n Cl and/or F halides; m+n=4) halomethane and halosilane derivatives, with atomic substituents and Pauling’s electronegativities overall sum,
Results and discussion
13C and 29Si δ NMR chemical shifts as a function of the Σ(rL ) values, in tetrahedral [AL4] (A=C, Si) systems with Σ ( χ L Pau ) ≥ 12.4 : the case of [AHmXn] compounds (Xn=combination of n halides; m+n=4)
The δ(13C) [32], [33], [44], [45], [46], [47] and δ(29Si) [42], [48], [49], [50], [51] NMR chemical shifts for [AX4] (A=C, Si; X4=combination of four Cl and/or F halides, Tables S1, S2) and [AHmXn] (Xn=combination of n Cl and/or F halides; m+n=4;
![Fig. 2: (a, b) δ(13C) and δ(29Si) NMR chemical shifts vs. ionic radii overall sum of carbon and silicon bonded atomic ligands, Σ(rL), in tetrahedral [AX4] (A=C, Si; X4=combination of four halides) compounds. The partially hydrogenated [AHmXn] (Xn=combination of n Cl and/or F halides; m+n=4) compounds, with Pauling’s electronegativities overall sum of the atomic substituents, Σ(χLPau), ≥12.4$\Sigma (\chi _L^{{\rm{Pau}}}),{\rm{ }} \ge 12.4$ are indicated in yellow. The ΔΣ(rL) differences are shown in the graphs by horizontal blue double arrows. The shown red lines, interpolating the data points of the sole [ABrmIn] (m+n=4) compounds with Σ(χLPau)≪12.4,$\Sigma (\chi _L^{{\rm{Pau}}}) \ll 12.4,$ correspond to: ΔΣ(rL)=0.](/document/doi/10.1515/pac-2019-0202/asset/graphic/j_pac-2019-0202_fig_002.jpg)
(a, b) δ(13C) and δ(29Si) NMR chemical shifts vs. ionic radii overall sum of carbon and silicon bonded atomic ligands, Σ(rL), in tetrahedral [AX4] (A=C, Si; X4=combination of four halides) compounds. The partially hydrogenated [AHmXn] (Xn=combination of n Cl and/or F halides; m+n=4) compounds, with Pauling’s electronegativities overall sum of the atomic substituents,
![Fig. 3: (a, b) ΔΣ(rL) differences vs. Σ(χLPau)$\Sigma (\chi _L^{{\rm{Pau}}})$ for [AX4] (A=C, Si; X4=combination of four Cl and/or F halides) and partially hydrogenated [AHmXn] (Xn=combination of n Cl and/or F halides; m+n=4) compounds with Σ(χLPau)≥12.4.$\Sigma (\chi _L^{{\rm{Pau}}}) \ge 12.4.$ In blue are indicated the straight lines interpolating the data points of the [AF4], [AClF3], [ACl2F2] and [ACl3F] compounds. As indicated, the previously calculated onset Σ(χLPau)$\Sigma (\chi _L^{{\rm{Pau}}})$ value corresponds to the intersection between last interpolating lines and the zero line [34]. The necessary corrections to be operated to the hydrogen electronegativity, calculated for the reference [CHF3] and [SiHF3] compounds (i.e. ΔχH−[CHF3]NMR$\Delta \chi _{H - [{\rm{CH}}{{\rm{F}}_3}]}^{{\rm{NMR}}}$ and ΔχH−[SiHF3]NMR$\Delta \chi _{H - [{\rm{SiH}}{{\rm{F}}_3}]}^{{\rm{NMR}}}$), are graphically shown by violet double arrows. By using, for the hydrogen atoms the corrected NMR effective electronegativity value (χHNMR=2.75),$(\chi _H^{{\rm{NMR}}} = 2.75),$ we can calculate the Σ(χLNMR).$\Sigma (\chi _L^{{\rm{NMR}}}).$ The ΔΣ(rL) vs. Σ(χLNMR)$\Sigma (\chi _L^{{\rm{NMR}}})$ values are reported in (c, d). It can be observed that in this case the behavior of the shown partially hydrogenated [AHmXn] compounds is identical to that of the sole halogenated [AX4] derivatives.](/document/doi/10.1515/pac-2019-0202/asset/graphic/j_pac-2019-0202_fig_003.jpg)
(a, b) ΔΣ(rL) differences vs.
The observed positions of the data points for the considered carbon and silicon halo-hydrido derivatives reported in Fig. 3a,b, are characterized by the higher
Calculation of the NMR effective electronegativity value for the hydrogen atom, on the basis of the [CHF3] and [SiHF3] reference compounds
From the 13C and 29Si NMR chemical shifts of [CHF3], δ(13C)=+118.8 ppm [32], and [SiHF3], δ(29Si)=−77.8 ppm [42], reference compounds, reported in the graphs of Fig. 2a,b vs. Σ(rL), it is possible to calculate the corresponding ΔΣ(rL) values, see Experimental. As expected, these calculated values are the highest among those obtained for the [CHmXn] and [SiHmXn] hydrogenated compounds, characterized by
Several electronegativity scales, calculated by using many physical parameters, have been proposed over the years after the original Pauling’s concept definition [56]. Due to the importance of the Pauling’s electronegativity scale [54], the others are routinely normalized to the former, obtaining an overall ranking range defined by single dimensionless numbers between 0.78 and 4.00. A slight variability of the electronegativity values ascribed to the same element in the different scales is generally observed. Hydrogen should be highlighted among the atoms having the wider range of attributed electronegativities, with values from 2.0 to 2.8
Conclusion
In this work, we have extended to the considered [AHmXn] (A=C, Si; Xn=combination of n Cl and/or F halides; m+n=4, with
Experimental section
The here adopted ionic radii are: rF−=133 [52]; rCl−=181 [52]; rBr−=196 [52]; rI−=220 [52] and rH−=208 pm [53], [54], [55], instead the used Pauling’s electronegativity values are:
Influence of steric hindrance and electronegativity of atomic substituents on the 13C and 29Si NMR chemical shifts of [AHmXn] (A=C, Si; Xn=combination of n Cl and/or F halides; m+n=4) compounds
The 13C and 29Si NMR chemical-shift of [AX4] (X4=combination of four halides) compounds are reported in Tables S1, S2 together with the overall sum of halides ionic radii, Σ(rL). Instead in Tables S3, S4 are reported the 13C and 29Si NMR chemical shifts of the considered [AHmXn] compounds whose
where iC=2126.5 ppm; sC=–2.7488 ppm/pm.
where iSi=2031 ppm; sSi=−2.703 ppm/pm.
We can calculate the horizontal distance, indicated as ΔΣ(rL) in the graphs of Fig. 2a,b (blue double arrows), between a given data point and the corresponding straight line, as follows:
We previously shown that when
where jC=−731 pm; tC=+58.3 pm.
where jSi=−892 pm; tSi=+72.3 pm.
Last straight lines are represented in the graphs of Fig. 3a,b, by blue skew lines crossing the zero line in proximity of the averaged onset electronegativity value corresponding to:
Following Equations deriving from Equations 1 directly relate the δ(13C) and δ(29Si) NMR chemical shifts to the Σ(rL) and ΔΣ(rL) values in the
It is noteworthy that none of the considered hydrogenated [AHmXn] derivatives, showing a
In the case of [CHF3] and [SiHF3] compounds, the following Equations give the NMR effective electronegativity sum,
By subtracting the contribution of the Pauling’s fluorine atoms electronegativity
The differences between the NMR effective and the Pauling’s electronegativities overall sums are as follows:
These are graphically shown by horizontal violet double arrows in the graphs of Fig. 3a,b, for both reference [CHF3] and [SiHF3] compounds. Because the hydrogen electronegativity value is expected to be constant and independent from molecular environment, we can indicate the averaged NMR effective electronegativity of hydrogen
Article note
A collection of invited papers based on presentations at the 15th Eurasia Conference on Chemical Sciences (EuAsC2S-15) held at Sapienza University of Rome, Italy, 5–8 September 2018.
Acknowledgments
The University of Salento (Italy), the PON 254/Ric. Potenziamento del “CENTRO RICERCHE PER LA SALUTE DELL’UOMO E DELL’AMBIENTE” Cod. PONa3_00334, and the Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari (Italy), are acknowledged for financial support.
Authors Contribution M.B. and F.P.F. designed research; M.B., A.C. and F.D.C performed research; M.B. performed calculations; M.B. and F.P.F. analyzed data; M.B. and F.P.F. wrote the paper; M.B. and F.P.F. active discussion and paper revision.
References
[1] H. Genther. NMR Spectroscopy, 2nd ed., Wiley, New York (1995).Suche in Google Scholar
[2] H. Marsmann. 29Si NMR Spectroscopic Results, Oxygen-17 and Silicon-29-NMR Basic Principles and Progress, pp. 65–235, Springer, Berlin, Heidelberg 17, (1981).10.1007/978-3-642-87762-9_2Suche in Google Scholar
[3] P. S. Pregosin. Transition Metal Magnetic Resonance, Elsevier, Amsterdam (1991).Suche in Google Scholar
[4] M. R. Burger, J. Kramer, H. Chermette, K. R. Koch. Magn. Reson. Chem.48, S38 (2010).10.1002/mrc.2607Suche in Google Scholar
[5] B. M. Still, P. G. Anil Kumar, J. R. Aldrich-Wright, W. S. Price. Chem. Soc. Rev.36, 665 (2007).10.1039/B606190GSuche in Google Scholar
[6] S. Fukawa, M. Hada, R. Fukuda, S. Tanaka, H. Nakatsuji. J. Comput. Chem.22, 528 (2001).10.1002/1096-987X(20010415)22:5<528::AID-JCC1024>3.0.CO;2-9Suche in Google Scholar
[7] C. Corminboeuf, T. Heine, J. Weber. Chem. Phys. Lett.357, 1 (2002).10.1016/S0009-2614(02)00372-XSuche in Google Scholar
[8] C. S. Weinert. ISRN Spectroscopy2012, 1 (2012).10.5402/2012/718050Suche in Google Scholar
[9] J. C. Davis, M. Bühl, K. R. Koch. J. Chem. Theory Comput.8, 1344 (2012).10.1021/ct300105qSuche in Google Scholar
[10] B. E. G. Lucier, K. E. Johnston, W. Xu, J. C. Hanson, S. D. Senanayake, S. M. Yao, W. Bourassa, M. Srebro, J. Autschbach, R. W. Schurko. J. Am. Chem. Soc.136, 1333 (2014).10.1021/ja4076277Suche in Google Scholar
[11] A. F. Maldonado, C. A. Gimenez, G. A. Aucar. Chem. Phys.395, 75 (2012).10.1016/j.chemphys.2011.08.020Suche in Google Scholar
[12] A. F. Maldonado, G. A. Aucar. J. Phys. Chem. A118, 7863 (2014).10.1021/jp502543mSuche in Google Scholar
[13] Y. Takeuchi, K. Tanaka, T. Harazono, S. Yoshimura. Bull. Chem. Soc. Jpn. 63, 708 (1990).10.1246/bcsj.63.708Suche in Google Scholar
[14] R. Vivas-Reyes, F. D. Proft, M. Biesemans, R. Willem, P. Geerlings. J. Phys. Chem. A106, 2753 (2002).10.1021/jp0145917Suche in Google Scholar
[15] P. Avalle, R. K. Harris, P. B. Karadakov, P. J. Wilson. Phys. Chem. Chem. Phys.4, 5925 (2002).10.1039/b208435jSuche in Google Scholar
[16] A. Bagno, G. Casella, G. Saielli. J. Chem. Theory Comput.2, 37 (2006).10.1021/ct050173kSuche in Google Scholar
[17] E. Malkin, S. Komorovsky, M. Repisky, T. B. Demissie, K. Ruud. J. Phys. Chem. Lett.4, 459 (2013).10.1021/jz302146mSuche in Google Scholar
[18] J. Autschbach, T. Ziegler. Relativistic Computation of NMR Shielding and Spin-Spin Constants-Encyclopedia of Nuclear Magnetic Resonance, pp. 306, Wiley, Chichester, (2002).10.1002/chin.200332285Suche in Google Scholar
[19] H. Nakatsuji, H. Takashima, M. Hada. Chem. Phys. Lett.233, 95 (1995).10.1016/0009-2614(94)01409-OSuche in Google Scholar
[20] H. Nakatsuji, T. Nakajima, M. Hada, H. Takashima, S. Tanaka. Chem. Phys. Lett.247, 418 (1995).10.1016/S0009-2614(95)01266-4Suche in Google Scholar
[21] H. Kaneko, M. Hada, T. Nakajima, H. Nakatsuji. Chem. Phys. Lett.261, 1 (1996).10.1016/0009-2614(96)00906-2Suche in Google Scholar
[22] T. N. Mitchell. J. Organomet. Chem. 255, 279 (1983).10.1016/S0022-328X(00)99319-7Suche in Google Scholar
[23] P. J. Watkinson, K. M. Mackay. J. Organomet. Chem.275, 39 (1984).10.1016/0022-328X(84)80575-6Suche in Google Scholar
[24] J. D. Kennedy, W. Mcfarlane, G. S. Pyne. J. Chem. Soc., Dalton Trans.23, 2332 (1977).10.1039/dt9770002332Suche in Google Scholar
[25] J. A. Tossell. Nuclear Magnetic Shieldings and Molecular Structure, Kluwer Academic Publishers, Dordrecht (1993).10.1007/978-94-011-1652-7Suche in Google Scholar
[26] R. G. Kidd. Annu. Rep. NMR Spectrosc.10A, 1 (1980).Suche in Google Scholar
[27] R. G. Kidd. Annu. Rep. NMR Spectrosc.23, 85 (1991).10.1016/S0066-4103(08)60276-8Suche in Google Scholar
[28] M. Benedetti, P. Papadia, C. R. Girelli, F. De Castro, F. Capitelli, F. P. Fanizzi. Inorg. Chim. Acta428, 8 (2015).10.1016/j.ica.2015.01.003Suche in Google Scholar
[29] H. O. Kalinowski, S. Berger, S. Braun. 13C-NMR-Spektroskopie, Thieme, Stuttgart (1984).Suche in Google Scholar
[30] M. Kaupp, O. L. Malkina, V. G. Malkin, P. Pyykkö. Chem. Eur. J.4, 118 (1998).10.1002/(SICI)1521-3765(199801)4:1<118::AID-CHEM118>3.0.CO;2-6Suche in Google Scholar
[31] A. A. Cheremisin, P. V. Schastnev. J. Magn. Res.40, 459 (1980).10.1016/0022-2364(80)90003-7Suche in Google Scholar
[32] R. Gollakota, J. Somayajulu, R. Kennedy, T. M. Vickrey, B. J. Zwolinski. J. Magn. Reson.33, 559 (1969).10.1016/0022-2364(79)90167-7Suche in Google Scholar
[33] R. A. De Marco, W. B. Fox, W. B. Moniz, S. A. Sojka. J. Magn. Reson.18, 522 (1975).10.1016/0022-2364(75)90107-9Suche in Google Scholar
[34] M. Benedetti, F. De Castro, F. P. Fanizzi. Chem. Eur. J.23, 16877 (2017).10.1002/chem.201703934Suche in Google Scholar
[35] M. Benedetti, F. De Castro, A. Ciccarese, F. P. Fanizzi. Dalton Trans.46, 14094 (2017).10.1039/C7DT03348FSuche in Google Scholar
[36] M. Benedetti, F. De Castro, E. Lamacchia, C. Pacifico, G. Natile, F. P. Fanizzi. Dalton Trans. 46, 15819 (2017).10.1039/C7DT03644BSuche in Google Scholar
[37] M. Benedetti, F. De Castro, D. Antonucci, P. Papadia, F. P. Fanizzi. Dalton Trans.44, 15377 (2015).10.1039/C5DT02285ASuche in Google Scholar
[38] M. Benedetti, F. De Castro, F. P. Fanizzi. Eur. J. Inorg. Chem.2016, 3957 (2016).10.1002/ejic.201600573Suche in Google Scholar
[39] M. Benedetti, F. De Castro, F. P. Fanizzi. Dalton Trans.46, 2855 (2017).10.1039/C7DT00307BSuche in Google Scholar PubMed
[40] M. Benedetti, C. R. Girelli, D. Antonucci, F. P. Fanizzi. J. Organomet. Chem.771, 40 (2014).10.1016/j.jorganchem.2014.05.014Suche in Google Scholar
[41] M. Benedetti, D. Antonucci, C. R. Girelli, F. P. Fanizzi. Eur. J. Inorg. Chem.2015, 2308 (2015).10.1002/ejic.201500103Suche in Google Scholar
[42] U. Niemann, H. C. Marsmann. Z. Naturforsch. 30b, 202 (1975).10.1515/znb-1975-3-413Suche in Google Scholar
[43] E. A. Robinson, R. J. Gillespie. Inorg. Chem.43, 2318 (2004).10.1021/ic030290vSuche in Google Scholar PubMed
[44] W. M. Litchman, D. M. Grant. J. Am. Chem. Soc.90, 1400 (1968).10.1021/ja01008a005Suche in Google Scholar
[45] P. C. Lauterbur. Ann. NY Acad. Sci.70, 841 (1958).10.1111/j.1749-6632.1958.tb35435.xSuche in Google Scholar
[46] O. W. Howarth, R. J. Lynch. Mol. Phys.15, 431 (1968).10.1080/00268976800101301Suche in Google Scholar
[47] G. R. Fulmer. Organometallics29, 2176 (2010).10.1021/om100106eSuche in Google Scholar
[48] R. B. Johannesen, F. E. Brinkman, T. D. Coyle. J. Phys. Chem. 72, 660 (1968).10.1021/j100848a047Suche in Google Scholar
[49] F. Klanberg, E. L. Muetterties. Inorg. Chem. 7, 155 (1968).10.1021/ic50059a032Suche in Google Scholar
[50] T. Heine. J. Phys. Chem. A.105, 620 (2001).10.1021/jp002495kSuche in Google Scholar
[51] G. A. Olah’, L. D. Field. Organometallics1, 1485 (1982).10.1021/om00071a016Suche in Google Scholar
[52] R. D. Shannon. Acta Crystallogr. Sect.A32, 751 (1976).10.1107/S0567739476001551Suche in Google Scholar
[53] L. Pauling. J. Am. Chem. Soc.54, 3570 (1932).10.1021/ja01348a011Suche in Google Scholar
[54] L. Pauling. The Nature of the Chemical Bond 3rd, 13th Printing 1995 ed., Cornell University Press, Ithaca, New York (1960).Suche in Google Scholar
[55] D. F. C. Morris, G. L. Reed. J. Inorg. Nucl. Chem.27, 1715 (1965).10.1016/0022-1902(65)80037-9Suche in Google Scholar
[56] M. R. Leach. Found. Chem.15, 13 (2013).10.1007/s10698-012-9151-3Suche in Google Scholar
[57] R. S. Mulliken. J. Chem. Phys.2, 782 (1934).10.1063/1.1749394Suche in Google Scholar
[58] R. G. Parr, R. G. Pearson. JACS105, 7512 (1983).10.1021/ja00364a005Suche in Google Scholar
[59] R. G. Pearson. Inorg. Chem.27, 734 (1988).10.1021/ic00277a030Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/pac-2019-0202).
©2019 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- 15th Eurasia Conference on Chemical Sciences (EuAsC2S-15) – 5th–8th September 2018, Rome, Italy
- Conference papers
- The Jahn-Teller effect in mixed aqueous solution: the solvation of Cu2+ in 18.6% aqueous ammonia obtained from ab initio quantum mechanical charge field molecular dynamics
- Facile synthesis of hydrogel-nickel nanoparticle composites and their applications in adsorption and catalysis
- The effect of pore morphology on the catalytic performance of β-glucosidase immobilized into mesoporous silica
- Competitive pseudo-ELISA based on molecularly imprinted nanoparticles for microcystin-LR detection in water
- Titanium based complexes with melanin precursors as a tool for directing melanogenic pathways
- Stability of PMMA-grafted/Ti hybrid biomaterial interface in corrosive media
- High performance liquid chromatographic profiling of antioxidant and antidiabetic flavonoids purified from Azadirachta indica (neem) leaf ethanolic extract
- Effects mediated by M2 muscarinic orthosteric agonist on cell growth in human neuroblastoma cell lines
- Heterogeneous palladium SALOPHEN onto porous polymeric microspheres as catalysts for heck reaction
- Transfer of chemical elements from milk to dairy products
- Is hydrogen electronegativity higher than Pauling’s value? New clues from the 13C and 29Si NMR chemical shifts of [CHF3] and [SiHF3] molecules
- How alkali-activated Ti surfaces affect the growth of tethered PMMA chains: a close-up study on the PMMA thickness and surface morphology
- Dual inhibitors of urease and carbonic anhydrase-II from Iris species
- Electrochemical synthesis and amidation of benzoin: benzamides from benzaldehydes
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- 15th Eurasia Conference on Chemical Sciences (EuAsC2S-15) – 5th–8th September 2018, Rome, Italy
- Conference papers
- The Jahn-Teller effect in mixed aqueous solution: the solvation of Cu2+ in 18.6% aqueous ammonia obtained from ab initio quantum mechanical charge field molecular dynamics
- Facile synthesis of hydrogel-nickel nanoparticle composites and their applications in adsorption and catalysis
- The effect of pore morphology on the catalytic performance of β-glucosidase immobilized into mesoporous silica
- Competitive pseudo-ELISA based on molecularly imprinted nanoparticles for microcystin-LR detection in water
- Titanium based complexes with melanin precursors as a tool for directing melanogenic pathways
- Stability of PMMA-grafted/Ti hybrid biomaterial interface in corrosive media
- High performance liquid chromatographic profiling of antioxidant and antidiabetic flavonoids purified from Azadirachta indica (neem) leaf ethanolic extract
- Effects mediated by M2 muscarinic orthosteric agonist on cell growth in human neuroblastoma cell lines
- Heterogeneous palladium SALOPHEN onto porous polymeric microspheres as catalysts for heck reaction
- Transfer of chemical elements from milk to dairy products
- Is hydrogen electronegativity higher than Pauling’s value? New clues from the 13C and 29Si NMR chemical shifts of [CHF3] and [SiHF3] molecules
- How alkali-activated Ti surfaces affect the growth of tethered PMMA chains: a close-up study on the PMMA thickness and surface morphology
- Dual inhibitors of urease and carbonic anhydrase-II from Iris species
- Electrochemical synthesis and amidation of benzoin: benzamides from benzaldehydes