Startseite Fractionation methods of eucalyptus kraft lignin for application in biorefinery
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fractionation methods of eucalyptus kraft lignin for application in biorefinery

  • Felipe Pedersoli Borges , Ana Márcia Macedo Ladeira Carvalho , Iara Fontes Demuner , Fernando José Borges Gomes ORCID logo , Jéssica Silva Gomes , Caio César Zandonadi Nunes , Marcela Ribeiro Coura , Laís Teixeira Rodrigues und Angélica de Cássia Oliveira Carneiro
Veröffentlicht/Copyright: 19. Dezember 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Kraft lignin has high dispersity and low reactivity. This study aimed to obtain more homogeneous and modified chemical fractions from the application of fractionation methods using organic solvents and acid precipitation. Organic solvents used were ethyl acetate, ethanol, methanol and acetone. The pHs tested were 9, 7, 5, 3 and 1, by adding hydrochloric acid. The fractions were characterized of acid-soluble and insoluble lignin, carbohydrates, ashes, elemental analysis and by Py-GC/MS. All fractions obtained in both fractionation methods showed higher carbon contents, higher purity and lower S/G ratio than the corresponding initial materials, characteristics that are very favorable for the application in biorefinery. Acetone-soluble (sequential) and pH 1 (one-step) precipitated fractions are the most promising for carbon fiber production. Fractions soluble in ethyl acetate (one-step) and insoluble at pH 3 and 1 (sequential) appear to be the most appropriate for applications that require good oxidative properties. The fractions soluble in ethanol (one-step), methanol (one-step), acetone (one-step) and precipitated at pH 9 (one-step) and pH 5 (sequential) are the ones that allow better chemical substitution in obtaining bioproducts. Fractions soluble in ethanol (sequential) and precipitated at pHs 5 and 1 (sequential) are not of commercial interest due to their low yield.


Corresponding author: Iara Fontes Demuner, Federal University of Vicosa, Av. Peter Henry Rolfs, 36570-900, Vicosa, MG, Brazil, E-mail:

Acknowledgments

Funding provided by the Minas Gerais State Research Foundation (FAPEMIG), from the Brazilian National Council for Science and Technology Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES) is greatly appreciated.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Conceptualization: Felipe Pedersoli Borges, Ana Márcia Macedo Ladeira Carvalho, Iara Fontes Demuner and Fernando José Borges Gomes. Methodology: Felipe Pedersoli Borges and Marcela Ribeiro Coura. Formal analysis and investigation: Felipe Pedersoli Borges, Jéssica Silva Gomes, Caio César Zandonadi Nunes and Laís Teixeira Rodrigues. Writing – original draft preparation: Felipe Pedersoli Borges. Writing – review and editing: Ana Márcia Macedo Ladeira Carvalho, Iara Fontes Demuner, Fernando José Borges Gomes, Marcela Ribeiro Coura, Jéssica Silva Gomes, Caio César Zandonadi Nunes, Laís Teixeira Rodrigues and Angélica de Cássia Oliveira Carneiro.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: The raw data can be obtained on request from the corresponding author.

References

Baekeland, L.H. (1909). The synthesis, constitution, and uses of Bakelite. Ind. Eng. Chem. 1: 149–161, https://doi.org/10.1021/ie50003a004.Suche in Google Scholar

Bajpai, P. (2018). Biermann’s Handbook of pulp and paper: volume 1: raw material and pulp making. Elsevier, Amsterdam.10.1016/B978-0-12-814238-7.00001-5Suche in Google Scholar

Baker, D.A., Gallego, N.C., and Baker, F.S. (2012). On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber. J. Appl. Polym. Sci. 124: 227–234, https://doi.org/10.1002/app.33596.Suche in Google Scholar

Barbosa, B.M., Vaz Jr, S., Colodette, J.L., De Siqueira, H.F., Da Silva, C.M.S., and Cândido, W.L. (2023). Effects of Kraft lignin and corn residue on the production of Eucalyptus pellets. Bioenergy Res. 16: 484–493, https://doi.org/10.1007/s12155-022-10465-7.Suche in Google Scholar

Berlin, A. and Balakshin, M. (2014). Industrial lignins: analysis, properties, and applications. Bioenergy Res.: 315–336, https://doi.org/10.1016/B978-0-444-59561-4.00018-8.Suche in Google Scholar

Boarino, A. and Klok, H.A. (2023). Opportunities and challenges for lignin valorization in food packaging, antimicrobial, and agricultural applications. Biomacromolecules 24: 1065–1077, https://doi.org/10.1021/acs.biomac.2c01385.Suche in Google Scholar PubMed PubMed Central

Borges, F.P., Gomes, J.S., Demuner, I.F., Gomes, F.J.B., and Carvalho, A.M.M.L. (2021). Study of the yield of eucalyptus kraft lignin fractionation by different organic solvents. O Papel 82: 68–72.Suche in Google Scholar

Brienza, F., Cannella, D., Montesdeoca, D., Cybulska, I., and Debecker, D.P. (2024). A guide to lignin valorization in biorefineries: traditional, recent, and forthcoming approaches to convert raw lignocellulose into valuable materials and chemicals. RSC Sustain. 2: 37–90, https://doi.org/10.1039/D3SU00140G.Suche in Google Scholar

Cao, L., Iris, K.M., Liu, Y., Ruan, X., Tsang, D.C., Hunt, A.J., Ok, Y., Song, H., and Zhang, S. (2018). Lignin valorization for the production of renewable chemicals: state-of-the-art review and future prospects. Bioresour. Technol. 269: 465–475, https://doi.org/10.1016/j.biortech.2018.08.065.Suche in Google Scholar PubMed

Cardoso, M., de Oliveira, É.D., and Passos, M.L. (2009). Chemical composition and physical properties of black liquors and their effects on liquor recovery operation in Brazilian pulp mills. Fuel 88: 756–763, https://doi.org/10.1016/j.fuel.2008.10.016.Suche in Google Scholar

Casademont, P., Sánchez-Oneto, J., Scandelai, A.P.J., Cardozo-Filho, L., and Portela, J.R. (2020). Hydrogen production by supercritical water gasification of black liquor: use of high temperatures and short residence times in a continuous reactor. J. Supercrit. Fluids 159: 104772, https://doi.org/10.1016/j.supflu.2020.104772.Suche in Google Scholar

Cassales, A., Ramos, L.A., and Frollini, E. (2020). Synthesis of bio-based polyurethanes from Kraft lignin and castor oil with simultaneous film formation. Int. J. Biol. Macromol. 145: 28–41, https://doi.org/10.1016/j.ijbiomac.2019.12.173.Suche in Google Scholar PubMed

Colodette, J.L., Zikeli, F., José, F., Gomes, B., and Rio, J.C. (2013) Detailed characterization of black liquor (lignin) deriving from kraft and sodaantraquinone pulping. In: 8th international black liquor colloquium. Federal University of Minas Gerais, Belo Horizonte.Suche in Google Scholar

del Río, J.C., Gutiérrez, A., Hernando, M., Landín, P., Romero, J., and Martínez, Á.T. (2005). Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC/MS. J. Anal. Appl. Pyrol. 74: 110–115, https://doi.org/10.1016/j.jaap.2004.10.010.Suche in Google Scholar

Demuner, I.F., Colodette, J.L., Demuner, A.J., and Jardim, C.M. (2019). Biorefinery review: wide-reaching products through kraft lignin. BioRes 14: 7543–7581, https://doi.org/10.15376/biores.14.3.Demuner.Suche in Google Scholar

Demuner, I.F., Gomes, F.J.B., Gomes, J.S., Coura, M.R., Borges, F.P., Carvalho, A.M.M.L., and Silva, C.M. (2021a). Improving kraft pulp mill sustainability by lignosulfonates production from processes residues. J. Clean. Prod. 317: 128286, https://doi.org/10.1016/j.jclepro.2021.128286.Suche in Google Scholar

Demuner, I.F., Gomes, F.J.B., Coura, M.R., Gomes, J.S., Demuner, A.J., Carvalho, A.M.M.L., and Silva, C.M. (2021b). Determination of chemical modification of eucalypt kraft lignin after thermal treatment by Py-GC–MS. J. Anal. Appl. Pyrol. 156: 105158, https://doi.org/10.1016/j.jaap.2021.105158.Suche in Google Scholar

Dieste, A., Clavijo, L., Torres, A.I., Barbe, S., Oyarbide, I., Bruno, L., and Cassella, F. (2016). Lignin from Eucalyptus spp. kraft black liquor as biofuel. Energy Fuels 30: 10494–10498, https://doi.org/10.1021/acs.energyfuels.6b02086.Suche in Google Scholar

Doherty, W.O., Mousavioun, P., and Fellows, C.M. (2011). Value-adding to cellulosic ethanol: lignin polymers. Ind. Crops Prod. 33: 259–276, https://doi.org/10.1016/j.indcrop.2010.10.022.Suche in Google Scholar

Domínguez-Robles, J., Tamminen, T., Liitiä, T., Peresin, M.S., Rodríguez, A., and Jääskeläinen, A.S. (2018). Aqueous acetone fractionation of kraft, organosolv and soda lignins. Int. J. Biol. Macromol. 106: 979–897, https://doi.org/10.1016/j.ijbiomac.2017.08.102.Suche in Google Scholar PubMed

Dongre, P., Driscoll, M., Amidon, T., and Bujanovic, B. (2015). Lignin-furfural based adhesives. Energies 8: 7897–7914, https://doi.org/10.3390/en8087897.Suche in Google Scholar

Dou, X., Jiang, X., Li, W., Zhu, C., Liu, Q., Lu, Q., Zheng, X., Chang, H., and Jameel, H. (2020). Highly efficient conversion of Kraft lignin into liquid fuels with a Co-Zn-beta zeolite catalyst. Appl. Catal. B: Environ. 268: 118429, https://doi.org/10.1016/j.apcatb.2019.118429.Suche in Google Scholar

Duval, A., Vilaplana, F., Crestini, C., and Lawoko, M. (2016). Solvent screening for the fractionation of industrial kraft lignin. Holzforschung 70: 11–20, https://doi.org/10.1515/hf-2014-0346.Suche in Google Scholar

Evstigneev, E.I. (2010). Specific features of lignin dissolution in aqueous and aqueous-organic media. Russ. J. Appl. Chem. 83: 509–513, https://doi.org/10.1134/S1070427210030250.Suche in Google Scholar

Fatehi, P. and Chen, J. (2016). Extraction of technical lignins from pulping spent liquors, challenges and opportunities. In: Production of biofuels and chemicals from lignin. Springer, Heidelberg, pp. 35–54.10.1007/978-981-10-1965-4_2Suche in Google Scholar

Fearon, O., Nykänen, V., Kuitunen, S., Ruuttunen, K., Alén, R., Alopaeus, V., and Vuorinen, T. (2020). Detailed modeling of the kraft pulping chemistry: carbohydrate reactions. AIChE J. 66: e16252, https://doi.org/10.1002/aic.16252.Suche in Google Scholar

Fernández-Rodríguez, J., Erdocia, X., Hernández-Ramos, F., Gordobil, O., Alriols, M.G., and Labidi, J. (2020). Direct lignin depolymerization process from sulfur-free black liquors. Fuel Process. Technol. 197: 106201, https://doi.org/10.1016/j.fuproc.2019.106201.Suche in Google Scholar

Frederick, J. (1997) Black liquor properties. In: Adams, T. (Ed.). Kraft recovery boilers. Tappi Press, Atlanta, pp. 61–96.Suche in Google Scholar

Fundador, N.G.V., Enomoto-Rogers, Y., Takemura, A., and Iwata, T. (2012). Acetylation and characterization of xylan from hardwood kraft pulp. Carbohydr. Polym. 87: 170–176, https://doi.org/10.1016/j.carbpol.2011.07.034.Suche in Google Scholar PubMed

Gellerstedt, G. (2015). Softwood Kraft lignin: raw material for the future. Ind. Crop Prod. 77: 845–854, https://doi.org/10.1016/j.indcrop.2015.09.040.Suche in Google Scholar

George, N., Adlakha, A., Mridula, Gupta, P., and Debroy, A. (2024). Biomedical applications of lignin derived from bio-waste materials. Biopolymers Biomed. Appl.: 333–372, https://doi.org/10.1002/9781119865452.ch13.Suche in Google Scholar

Gierer, J. (1980). Chemical aspects of kraft pulping. Wood Sci. Technol. 14: 241–266, https://doi.org/10.1007/BF00383453.Suche in Google Scholar

Gomes, F.J.B., Colodette, J.L., Burnet, A., Batalha, L.A.R., Santos, F.A., and Demuner, I.F. (2015). Thorough characterization of Brazilian new generation of eucalypt clones and grass for pulp production. Int. J. For. Res. 1: 10, https://doi.org/10.1155/2015/814071.Suche in Google Scholar

Gordobil, O., Moriana, R., Zhang, L., Labidi, J., and Sevastyanova, O. (2016). Assesment of technical lignins for uses in biofuels and biomaterials: structure-related properties, proximate analysis and chemical modification. Ind. Crops Prod. 83: 155–165, https://doi.org/10.1016/j.indcrop.2015.12.048.Suche in Google Scholar

Gordobil, O., Diaz, R.H., Sandak, J., and Sandak, A. (2022). One-step lignin refining process: the influence of the solvent nature on the properties and quality of fractions. Polymers 14: 2363, https://doi.org/10.3390/polym14122363.Suche in Google Scholar PubMed PubMed Central

Guerra, A., Filpponen, I., Lucia, L.A., and Argyropoulos, D.S. (2006). Comparative evaluation of three lignin isolation protocols for various wood species. J. Agric. Food Chem. 54: 9696–9705, https://doi.org/10.1021/jf062433c.Suche in Google Scholar PubMed

Helander, M., Theliander, H., Lawoko, M., Henriksson, G., Zhang, L., and Lindström, M.E. (2013). Fractionation of technical lignin: molecular mass and pH effects. BioRes. 8: 2270–2282, https://doi.org/10.15376/biores.8.2.2270-2282.Suche in Google Scholar

Hildebrand, J.H. and Scott, R.L. (1950). The solubility of nonelectrolytes. Reinhold Pub. Corp, New York.Suche in Google Scholar

Hu, L., Pan, H., Zhou, Y., and Zhang, M. (2011). Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: a brief review. BioRes 6: 3515–3525, https://doi.org/10.15376/biores.6.3.3515-3525.Suche in Google Scholar

Hu, J., Zhang, Q., and Lee, D.J. (2017). Kraft lignin biorefinery: a proposal. Bioresour. Technol. 247: 1181–1183, https://doi.org/10.1016/j.biortech.2017.08.169.Suche in Google Scholar PubMed

Hubbe, M.A., Alén, R., Paleologou, M., Kannangara, M., and Kihlman, J. (2019). Lignin recovery from spent alkaline pulping liquors using acidification, membrane separation, and related processing steps: a review. BioRes 14: 2300–2351, https://doi.org/10.15376/biores.14.1.2300-2351.Suche in Google Scholar

Idris, N.N., Osman, L.S., Garba, Z.N., Hamidon, T.S., Brosse, N., Ziegler-Devin, I. (2024). Isolation, properties, and recent advancements of lignin nanoparticles as green antioxidants. Eur. Polym. J. 212: 113059, https://doi.org/10.1016/j.eurpolymj.2024.113059.Suche in Google Scholar

Jääskeläinen, A.S., Keyriläinen, P.W., Liitiä, T., and Tamminen, T. (2017). Carbohydrate-free and highly soluble softwood kraft lignin fractions by aqueous acetone evaporation fractionation. NPPRJ 32: 485–492, https://doi.org/10.3183/npprj-2017-32-04_p485-492_jaaskelainen.Suche in Google Scholar

Jardim, J.M., Hart, P.W., Lucia, L., Jameel, H., and Chang, H. (2020). A quantitative comparison of the precipitation behavior of lignin from sweetgum and pine kraft black liquors. BioRes 15: 5464–5480, https://doi.org/10.15376/biores.15.3.5464-5480.Suche in Google Scholar

Kadla, J.F. and Kubo, S. (2004). Lignin-based polymer blends: analysis of intermolecular interactions in lignin–synthetic polymer blends. Compos. - A: Appl. Sci. Manuf. 35: 395–400, https://doi.org/10.1016/j.compositesa.2003.09.019.Suche in Google Scholar

Kevlich, N.S., Shofner, M.L., and Nair, S. (2017). Membranes for Kraft black liquor concentration and chemical recovery: current progress, challenges, and opportunities. Sep. Sci. Technol. 52: 1070–1094, https://doi.org/10.1080/01496395.2017.1279180.Suche in Google Scholar

Kim, J.Y., Park, S.Y., Lee, J.H., Choi, I.G., and Choi, J.W. (2017). Sequential solvent fractionation of lignin for selective production of monoaromatics by Ru catalyzed ethanolysis. RSC Adv. 7: 53117–53125, https://doi.org/10.1039/C7RA11541E.Suche in Google Scholar

Kron, L. (2024) Hardwood delignification: understanding chemistry and mass transport fundamentals. In: Thesis for the degree of licentiate of engineering. Chalmers University of Technology, Gothenburg, Sweden.Suche in Google Scholar

Kumar, N.S., Grekov, D., Pré, P., and Alappat, B.J. (2024). Statistical approach to describe the properties of nanoporous carbons from lignin by chemical activation. SM&T: e00939, https://doi.org/10.1016/j.susmat.2024.e00939.Suche in Google Scholar

Li, M.F., Sun, S.N., Xu, F., and Sun, R.C. (2012). Sequential solvent fractionation of heterogeneous bamboo organosolv lignin for value-added application. Sep. Purif. Technol. 101: 18–25, https://doi.org/10.1016/j.seppur.2012.09.013.Suche in Google Scholar

Li, Q., Xie, S., Serem, W.K., Naik, M.T., Liu, L., and Yuan, J.S. (2017). Quality carbon fibers from fractionated lignin. Green Chem. 19: 1628–1634, https://doi.org/10.1039/C6GC03555H.Suche in Google Scholar

Li, Y., Shuai, L., Kim, H., Motagamwala, A.H., Mobley, J.K., Yue, F., Tobimatsu, Y., Havkin-Frenkel, D., Chen, F., Dixon, R.A., et al.. (2018). An “ideal lignin” facilitates full biomass utilization. Sci. Adv. 4: 2968, https://doi.org/10.1126/sciadv.aau2968.Suche in Google Scholar PubMed PubMed Central

Liu, L.Y., Chiang, W.S., Chang, H.M., and Yeh, T.F. (2024). Phenolation to improve hardwood kraft lignin for wood adhesive application. Polymers 16: 1923, https://doi.org/10.3390/polym16131923.Suche in Google Scholar PubMed PubMed Central

Lourençon, T.V., Hansel, F.A., Da Silva, T.A., Ramos, L.P., De Muniz, G.I., and Magalhães, W.L. (2015). Hardwood and softwood kraft lignins fractionation by simple sequential acid precipitation. Sep. Purif. Technol. 154: 82–88, https://doi.org/10.1016/j.seppur.2015.09.015.Suche in Google Scholar

Luo, H. and Abu-Omar, M.M. (2017). Chemicals from lignin. Encycl. Sustain. Technol. 3: 573–585, https://doi.org/10.1016/B978-0-12-409548-9.10235-0.Suche in Google Scholar

Madhu, R., Periasamy, A.P., Schlee, P., Hérou, S., and Titirici, M.M. (2023). Lignin: a sustainable precursor for nanostructured carbon materials for supercapacitors. Carbon 207: 172–197, https://doi.org/10.1016/j.carbon.2023.03.001.Suche in Google Scholar

Mandlekar, N., Cayla, A., Rault, F., Giraud, S., Salaün, F., Malucelli, G., and Guan, J.P. (2018). An overview on the use of lignin and its derivatives in fire retardant polymer systems. Lignin-Trends Appl. 9: 207–231, https://doi.org/10.5772/intechopen.72963.Suche in Google Scholar

Maradur, S.P., Kim, C.H., Kim, S.Y., Kim, B.H., Kim, W.C., and Yang, K.S. (2012). Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile. Synth. Met. 162: 453–459, https://doi.org/10.1016/j.synthmet.2012.01.017.Suche in Google Scholar

Margarida Martins, M., Carvalheiro, F., and Gírio, F. (2024). An overview of lignin pathways of valorization: from isolation to refining and conversion into value-added products. Biomass Conv. Bioref. 14: 3183–3207, https://doi.org/10.1007/s13399-022-02701-z.Suche in Google Scholar

Ni, Y. and Hu, Q. (1995). Alcell lignin solubility in ethanol-water mixtures. J. Appl. Polym. Sci. 57: 1441–1446, https://doi.org/10.1002/app.1995.070571203.Suche in Google Scholar

Norgren, M. and Edlund, H. (2014). Lignin: recent advances and emerging applications. COCIS 19: 409–416, https://doi.org/10.1016/j.cocis.2014.08.004.Suche in Google Scholar

Norgren, M., Edlund, H., Wågberg, L., Lindström, B., and Annergren, G. (2001). Aggregation of kraft lignin derivatives under conditions relevant to the process, part I: phase behaviour. Colloids Surf. A: Physicochem. Eng. Asp. 194: 85–96, https://doi.org/10.1016/S0927-7757(01)00753-1.Suche in Google Scholar

Nunes, C.C.Z., de Paula, H.B., Demuner, I.F., de Paula, M.O., Pedroti, L.G., and Carvalho, A.M.M.L. (2024). Kraft lignin biorefinery: from pulping side streams to concrete plasticizers. Eur. J. Wood Wood Prod.: 1–12, https://doi.org/10.1007/s00107-024-02044-8.Suche in Google Scholar

Pang, T., Wang, G., Sun, H., Sui, W., and Si, C. (2021). Lignin fractionation: effective strategy to reduce molecule weight dependent heterogeneity for upgraded lignin valorization. Ind. Crop Prod. 165: 113442, https://doi.org/10.1016/j.indcrop.2021.113442.Suche in Google Scholar

Park, S.Y., Kim, J.Y., Youn, H.J., and Choi, J.W. (2018). Fractionation of lignin macromolecules by sequential organic solvents systems and their characterization for further valuable applications. Int. J. Biol. Macromol. 106: 793–802, https://doi.org/10.1016/j.ijbiomac.2017.08.069.Suche in Google Scholar PubMed

Rao, J., Lv, Z., Chen, G., and Peng, F. (2023). Hemicellulose: structure, chemical modification, and application. Prog. Polym. Sci. 140: 101675, https://doi.org/10.1016/j.progpolymsci.2023.101675.Suche in Google Scholar

Roberts, J.E., Khan, S.A., and Spontak, R.J. (1996). Controlled black liquor viscosity reduction through salting-in. AIChE J. 42: 2319–2326, https://doi.org/10.1002/aic.690420821.Suche in Google Scholar

Sameni, J., Krigstin, S., and Sain, M. (2017). Solubility of lignin and acetylated lignin in organic solvents. BioRes 12: 1548–1565, https://doi.org/10.15376/biores.12.1.1548-1565.Suche in Google Scholar

Sannigrahi, P., Pu, Y., and Ragauskas, A. (2010). Cellulosic biorefineries—unleashing lignin opportunities. COSUST 2: 383–393, https://doi.org/10.1016/j.cosust.2010.09.004.Suche in Google Scholar

Schlee, P., Hosseeinaei, O., O’Keefe, C.A., Mostazo-López, M.J., Cazorla-Amorós, D., Herou, S., Tomani, P., Grey, C.P., and Titirici, M. (2020). Hardwood versus softwood Kraft lignin–precursor-product relationships in the manufacture of porous carbon nanofibers for supercapacitors. J. Mater. Chem. A 8: 23543–23554, https://doi.org/10.1039/D0TA09093J.Suche in Google Scholar

Schorr, D., Diouf, P.N., and Stevanovic, T. (2014). Evaluation of industrial lignins for biocomposites production. Ind. Crops Prod. 52: 65–73, https://doi.org/10.1016/j.indcrop.2013.10.014.Suche in Google Scholar

Sevastyanova, O., Helander, M., Chowdhury, S., Lange, H., Wedin, H., Zhang, L (2014). Tailoring the molecular and thermo–mechanical properties of kraft lignin by ultrafiltration. J. Appl. Polym. Sci. 131: 18, https://doi.org/10.1002/app.40799.Suche in Google Scholar

Sewring, T., Durruty, J., Schneider, L., Schneider, H., Mattsson, T., and Theliander, H. (2019). Acid precipitation of kraft lignin from aqueous solutions: the influence of pH, temperature, and xylan. J. Wood Chem. Technol. 39: 1–13, https://doi.org/10.1080/02773813.2018.1488870.Suche in Google Scholar

Shorey, R., Salaghi, A., Fatehi, P., and Mekonnen, T. (2024). Valorization of lignin for advanced material applications: a review. RSC Sustain. 2: 804–831, https://doi.org/10.1039/D3SU00401E.Suche in Google Scholar

Solt, P., Rößiger, B., Konnerth, J., and Van Herwijnen, H.W. (2018). Lignin phenol formaldehyde resoles using base-catalysed depolymerized kraft lignin. Polym 10: 1162, https://doi.org/10.3390/polym10101162.Suche in Google Scholar PubMed PubMed Central

Tagami, A., Gioia, C., Lauberts, M., Budnyak, T., Moriana, R., Lindström, M.E., and Sevastyanova, O. (2019). Solvent fractionation of softwood and hardwood kraft lignins for more efficient uses: compositional, structural, thermal, antioxidant and adsorption properties. Ind. Crops Prod. 129: 123–134, https://doi.org/10.1016/j.indcrop.2018.11.067.Suche in Google Scholar

Toledano, A., García, A., Mondragon, I., and Labidi, J. (2010). Lignin separation and fractionation by ultrafiltration. Sep. Purif. Technol. 71: 38–43, https://doi.org/10.1016/j.seppur.2009.10.024.Suche in Google Scholar

Tomani, P.E.R. (2010). The Lignoboost process. Cellul. Chem. Technol. 44: 53–58.Suche in Google Scholar

Truncali, A., Laxminarayan, T., Rajagopalan, N., Weinell, C.E., Kiil, S., and Johansson, M. (2024). Epoxidized technical Kraft lignin as a particulate resin component for high-performance anticorrosive coatings. J. Coat. Technol. Res. 21: 1–17, https://doi.org/10.1007/s11998-023-00899-9.Suche in Google Scholar

Ulmgren, P. (1997). Non-process elements in a bleached kraft pulp mill with a high degree of system closure – state of the art. Nord. Pulp Pap. Res. J. 12: 32–41, https://doi.org/10.3183/npprj-1997-12-01-p032-041.Suche in Google Scholar

Vishtal, A.G. and Kraslawski, A. (2011). Challenges in industrial applications of technical lignins. BioRes 6: 3547–3568, https://doi.org/10.15376/biores.6.3.3547-3568.Suche in Google Scholar

Wang, G. and Chen, H. (2013). Fractionation of alkali-extracted lignin from steam-exploded stalk by gradient acid precipitation. Sep. Purif. Technol. 105: 98–105, https://doi.org/10.1016/j.seppur.2012.12.009.Suche in Google Scholar

Wang, Q., Chen, K., Li, J., Yang, G., Liu, S., and Xu, J. (2011). The solubility of lignin from bagasse in a 1,4-butanediol/water system. BioRes 6: 3034–3043, https://doi.org/10.15376/biores.6.3.3034-3043.Suche in Google Scholar

Wang, Y., Xue, D., Zhuo, J., and Xiang, Z. (2024). Optimizing hemicelluloses pre-extraction in Eucalyptus kraft pulping: a pathway towards enhancing pulp mill biorefineries. Chin. J. Chem. Eng. 70: 162–172, https://doi.org/10.1016/j.cjche.2024.03.017.Suche in Google Scholar

Wikberg, H., Leppävuori, J., Ohra-aho, T., and Liitiä, T. (2017) CatLignin: reactive lignin for phenol replacement in resins. In Proceedings of nordic wood biorefinery conference. NWBC, Stockholm, Sweden, pp. 94–97.Suche in Google Scholar

Zhang, W., Ma, Y., Wang, C., Li, S., Zhang, M., and Chu, F. (2013). Preparation and properties of lignin–phenol–formaldehyde resins based on different biorefinery residues of agricultural biomass. Ind. Crop Prod. 43: 326–333, https://doi.org/10.1016/j.indcrop.2012.07.037.Suche in Google Scholar

Zhou, X.F. and Lu, X.J. (2014). Structural characterization of kraft lignin for its green utilization. Wood Res 59: 583–592.Suche in Google Scholar

Received: 2024-05-08
Accepted: 2024-11-29
Published Online: 2024-12-19
Published in Print: 2025-03-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Biorefining
  3. Fractionation methods of eucalyptus kraft lignin for application in biorefinery
  4. Pulp and paper industry side-stream materials as feed for the oleaginous yeast species Lipomyces starkeyi and Rhodotorula toruloides
  5. Chemical Pulping
  6. Comparing classic time series models and state-of-the-art time series neural networks for forecasting as-fired liquor properties
  7. Optimization of kraft pulping process for Sesbania aculeata (dhaincha) stems using RSM
  8. On the nature of the selectivity of oxygen delignification
  9. Unlocking potential: the role of chemometric modeling in pulp and paper manufacturing
  10. Effects of chemical environment on softwood kraft pulp: exploring beyond conventional washing methods
  11. Bleaching
  12. Variations in carbohydrates molar mass distribution during chemical degradation and consequences on fibre strength
  13. Mechanical Pulping
  14. Energy consumption in refiner mechanical pulping
  15. Paper Technology
  16. Australian wheat and hardwood fibers for advanced packaging materials
  17. Compression refining: the future of refining? Application to bleached kraft eucalyptus pulp
  18. The effect of nanocellulose to coated paper and recycled paper
  19. Interpreting the relationship between properties of wood and pulping & paper via machine learning algorithms combined with SHAP analysis
  20. Hybridization to prepare environmentally friendly, cost-effective superhydrophobic oleophobic coatings
  21. Paper Physics
  22. Characterising the mechanical behaviour of dry-formed cellulose fibre materials
  23. Paper Chemistry
  24. Study on the properties of ground film paper prepared from lactic acid-modified cellulose
  25. Environmental Impact
  26. Characterization of sludge from a cellulose pulp mill for its potential biovalorization
  27. The in situ green synthesis of metal organic framework (HKUST-1)/cellulose/chitosan composite aerogel (CSGA/HKUST-1) and its adsorption on tetracycline
  28. Evaluation of the potential use of powdered activated carbon in the treatment of effluents from bleached kraft pulp mills
  29. Recycling
  30. Waste newspaper activation by sodium phosphate for adsorption dynamics of methylene blue
Heruntergeladen am 18.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/npprj-2024-0037/pdf
Button zum nach oben scrollen