Startseite Electrospinning hydrophobically modified polyvinyl alcohol composite air filter paper with water resistance and high filterability properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Electrospinning hydrophobically modified polyvinyl alcohol composite air filter paper with water resistance and high filterability properties

  • Weiyin Su , Lanfeng Hui ORCID logo EMAIL logo , Qian Yang , Lingyuan Wang , Xiaoyan Ma und Yumeng Zhao
Veröffentlicht/Copyright: 1. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, a simple method for hydrophobic modification of polyvinyl alcohol (PVA) was found. Using N-methylpyrrolidone as solvent, PVA was esterified with stearyl chloride without catalyst. The modified hydrophobic polyvinyl alcohol (MPVA) was well verified by FT-IR and XRD. Using air filter paper as receiving substrate and MPVA as spinning solution, MPVA air filter paper with water resistance and high filtration performance was prepared, and hydrophilic PVA air filter paper was prepared as controlled sample. SEM was used to observe the fiber morphology on the surface of the two composite filter papers. The contact angle of hydrophobic MPVA air filter paper (25:3) was 121.9°, and the filtration efficiency was increased to 99.9955 % and the filter initial resistance increased to 90 Pa.

Funding statement: This work was financially supported by the National Key Research and Development Plan (Grant No. 2017YFB0308300).

  1. Conflict of interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Aydogdu, A., Sumnu, G., Sahin, S. (2019) Fabrication of gallic acid loaded hydroxypropyl methylcellulose nanofibers by electrospinning technique as active packaging material. Carbohydr. Polym. 208:241–250. https://doi.org/10.1016/j.carbpol.2018.12.065.10.1016/j.carbpol.2018.12.065Suche in Google Scholar

Bhardwaj, N., Kundu, S.C. (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28:325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004.10.1016/j.biotechadv.2010.01.004Suche in Google Scholar

Chang, C., Limkrailassiri, K., Lin, L. (2008) Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns. Appl. Phys. Lett. 93:469. https://doi.org/10.1063/1.2975834.10.1063/1.2975834Suche in Google Scholar

Cai, H., Chen, M., Chen, Q., Du, F., Liu, J., Shi, H. (2020) Microplastic quantification affected by structure and pore size of filters. Chemosphere. 257:127198. https://doi.org/10.1016/j.chemosphere.2020.127198.10.1016/j.chemosphere.2020.127198Suche in Google Scholar

Deitzel, J.M., Kleinmeyer, J., Harris, D., Tan, N.C.B. (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer. 42:261–272. https://doi.org/10.1016/S0032-3861(00)00250-0.10.1016/S0032-3861(00)00250-0Suche in Google Scholar

Du, Q., Wang, N., Liu, W., Chen, X., Xu, Y., Wan, Y. (2019) Preparation of electrospun PVDF nanofiber composite filter medium and its application in air filtration. Paper and Biomaterials. 4:26–33. https://doi.org/CNKI:SUN:GJZZ.0.2019-01-004.10.26599/PBM.2019.9260004Suche in Google Scholar

El-aziz, A.A., El-Maghraby, A., Taha, N.A. (2017) Comparing between polyvinyl alcohol (PVA) nanofiber and polyvinyl alcohol (PVA) nanofiber/Hydroxyapatite (HA) for removal of Zn + 2 ions from waste water. Arab. J. Chem. 10:1052–1060. https://doi.org/10.1016/j.arabjc.2016.09.025.10.1016/j.arabjc.2016.09.025Suche in Google Scholar

Frenot, A., Chronakis, I.S. (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci. 8:64–75. https://doi.org/10.1016/S1359-0294(03)00004-9.10.1016/S1359-0294(03)00004-9Suche in Google Scholar

Gohil, J.M., Bhattacharya, A., Ray, P. (2006) Studies on the crosslinking of Poly (Vinyl Alcohol). J Polym Res. 13:161–169. https://doi.org/10.1007/s10965-005-9023-9.10.1007/s10965-005-9023-9Suche in Google Scholar

Guzman-Puyol, S., Ceseracciu, L., Heredia-Guerrero, J.A., Anyfantis, G.C., Cingolani, R., Athanassiou, A., Bayer, I.S. (2015) Effect of trifluoroacetic acid on the properties of polyvinyl alcohol and polyvinyl alcohol–cellulose composites. Chem. Eng. J. 277:242–251. https://doi.org/10.1016/j.cej.2015.04.092.10.1016/j.cej.2015.04.092Suche in Google Scholar

Hou, H., Jun, Z., Arndt, R., Andreas, S., Joachim, H.W., Andreas, G. (2002) Poly(p-xylylene) Nanotubes by coating and removal of ultrathin polymer template fibers. Macromolecules. 35:2429–2431. https://doi.org/10.1021/ma011607i.10.1021/ma011607iSuche in Google Scholar

Hou, H., Ge, J.J., Zeng, J., Li, Q., Reneker, D.H., Greiner, A., Cheng, S.Z.D. (2005) Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chemistry of Materials. 17:967–973. https://doi.org/10.1021/cm0484955.10.1021/cm0484955Suche in Google Scholar

Jabri, W., Vroman, P., Perwuelz, A. (2015) Study of the influence of synthetic filter media compressive behavior on its dust holding capacity. Sep. Purif. Technol. 156:92–102. https://doi.org/10.1016/j.seppur.2015.09.068.10.1016/j.seppur.2015.09.068Suche in Google Scholar

Jia, D., Wang, K., Huang, J. (2017) Filter paper derived nanofibrous silica–carbon composite as anodic material with enhanced lithium storage performance. Chem. Eng. J. 317:673–686. https://doi.org/10.1016/j.cej.2017.02.109.10.1016/j.cej.2017.02.109Suche in Google Scholar

Kim, K., Yu, M., Zong, X., Chiu, J., Fang, D., Seo, Y.S., Hsiao, B.S., Chu, B., Hadjiargyrou, M. (2003) Control of degradation rate and hydrophilicity in electrospun non-woven poly ( D , L-lactide) nanofiber scaffolds for biomedical applications. Biomaterials. 24:4977–4985. https://doi.org/10.1016/S0142-9612(03)00407-1.10.1016/S0142-9612(03)00407-1Suche in Google Scholar

Liu, H., Hsieh, Y. (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Pol Phys. 40:2119–2129. https://doi.org/10.1002/polb.10261.10.1002/polb.10261Suche in Google Scholar

Lu, P., Ding, B. (2008) Applications of electrospun fibers. Recent Pat Nanotech. 2:169–182. https://doi.org/10.2174/187221008786369688.10.2174/187221008786369688Suche in Google Scholar PubMed

Li, Y., Yao, S. (2017) High stability under extreme condition of the poly(vinyl alcohol) nanofibers crosslinked by glutaraldehyde in organic medium. Polym. Degrad. Stab. 137:229–237. https://doi.org/10.1016/j.polymdegradstab.2017.01.018.10.1016/j.polymdegradstab.2017.01.018Suche in Google Scholar

Liao, Y., Loh, C., Tian, M., Wang, R., Fane, A.G. (2018) Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Prog. Polym. Sci. 77:69–94. https://doi.org/10.1016/j.progpolymsci.2017.10.003.10.1016/j.progpolymsci.2017.10.003Suche in Google Scholar

Liu, Z., Yu, J., Lin, W., Yang, W., Li, R., Chen, H., Zhang, X. (2018) Facile method for the hydrophobic modification of filter paper for applications in water-oil separation. Surf. Coat. Technol. 352:313–319. https://doi.org/10.1016/j.surfcoat.2018.08.026.10.1016/j.surfcoat.2018.08.026Suche in Google Scholar

Long, J., Tang, M., Sun, Z., Liang, Y., Hu, J. (2018) Dust loading performance of a novel submicro-fiber composite filter medium for engine. Materials. 11:2038. https://doi.org/10.3390/ma11102038.10.3390/ma11102038Suche in Google Scholar PubMed PubMed Central

Megelski, S., Stephens, J.S., Chase, D.B., Rabolt, J.F. (2002) Micro- and nanostructured Surface morphology on electrospun polymer fibers. Macromolecules. 35:8456–8466. https://doi.org/10.1021/ma020444a.10.1021/ma020444aSuche in Google Scholar

Meechaisue, C., Dubin, R., Supaphol, P., Hoven, V.P., Kohn, J. (2006) Electrospun mat of tyrosine-derived polycarbonate fibers for potential use as tissue scaffolding material. J Biomater Sci Polym Ed. 17:1039–1056. https://doi.org/10.1163/156856206778365988.10.1163/156856206778365988Suche in Google Scholar

Pan, Y., Wang, W., Peng, C., Shi, K., Luo, Y., Ji, X. (2014) Novel hydrophobic polyvinyl alcohol-formaldehyde foams for organic solvents absorption and effective separation. RSC Adv. 4:660–669. http://ir.ciac.jl.cn/handle/322003/57244.10.1039/C3RA43907KSuche in Google Scholar

Park, M.J., Gonzales, R.R., Abdel-Wahab, A., Phuntsho, S., Shon, H.K. (2018) Hydrophilic polyvinyl alcohol coating on hydrophobic electrospun nanofiber membrane for high performance thin film composite forward osmosis membrane. Desalination. 426:50–59. https://doi.org/10.1016/j.desal.2017.10.042.10.1016/j.desal.2017.10.042Suche in Google Scholar

Reneker, D.H., Yarin, A.L., Zussman, E., Xu, H. (2007) Electrospinning of nanofibers from polymer solutions and melts. Appl. Mech. Mater. 41:43–195. https://doi.org/10.1016/s0065-2156(07)41002-x.10.1016/S0065-2156(07)41002-XSuche in Google Scholar

Rianjanu, A., Kusumaatmaja, A., Suyono, E.A., Triyana, K. (2018) Solvent vapor treatment improves mechanical strength of electrospun polyvinyl alcohol nanofibers. Heliyon. 4:e00592. https://doi.org/10.1016/j.heliyon.2018.e00592.10.1016/j.heliyon.2018.e00592Suche in Google Scholar PubMed PubMed Central

Santi, T., Tanarinthorn, P., Monchawan, W., Ittipol, J., Porntiva, F., Somsak, S., Chidchanok, M., Pitt, S. (2007) Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose. 14:563–575. https://doi.org/10.1007/s10570-007-9113-4.10.1007/s10570-007-9113-4Suche in Google Scholar

Suk, H.J., Lee, D.H., Ka, J.W., Kim, J., Kwon, T.W., Park, D.K., Yi, M.H., Ann, T. (2012) Modified polyvinyl alcohol layer with hydrophobic surface for the passivation of pentacene thin-film transistor. J Nanosci Nanotechnol. 12:3214–3218. https://doi.org/10.1166/jnn.2012.5643.10.1166/jnn.2012.5643Suche in Google Scholar PubMed

Sun, Z., Tang, M., Song, Q., Yu, J., Liang, Y., Hu, J., Wang, J. (2018) Filtration performance of air filter paper containing kapok fibers against oil aerosols. Cellulose. 25:6719–6729. https://doi.org/10.1007/s10570-018-1989-7.10.1007/s10570-018-1989-7Suche in Google Scholar

Sha, L., Ma, C., Zhao, H., Qiu, S., Yan, Z., Guo, D. (2021) Facile fabrication of superhydrophobic filter paper with improved durability and water repellency. Nordic Pulp & Paper Research Journal. 36(4):662–670. https://doi.org/10.1515/npprj-2021-0010.10.1515/npprj-2021-0010Suche in Google Scholar

Teo, W.E., Inai, R., Ramakrishna, S. (2011) Technological advances in electrospinning of nanofibers. Sci Technol ADV Mat. 12:013002. https://doi.org/10.1088/1468-6996/12/1/11660944.10.1088/1468-6996/12/1/013002Suche in Google Scholar

Ullah, S., Hashmi, M., Hussain, N., Ullah, A., Sarwar, M.N., Saito, Y., Kim, S.H. (2019) Stabilized nanofibers of polyvinyl alcohol (PVA) crosslinked by unique method for efficient removal of heavy metal ions. J Water Process Eng. 33:101111. https://doi.org/10.1016/j.jwpe.2019.101111.10.1016/j.jwpe.2019.101111Suche in Google Scholar

Verma, V.K., Subbiah, S., Kota, S.H. (2019) Sericin-coated polyester based air-filter for removal of particulate matter and volatile organic compounds (BTEX) from indoor air. Chemosphere. 237:124462. https://10.1016/j.chemosphere.2019.124462.10.1016/j.chemosphere.2019.124462Suche in Google Scholar PubMed

Wang, S., Zhang, D., Shao, Z., Liu, S. (2019) Cellulosic materials-enhanced sandwich structure-like separator via electrospinning towards safer lithium-ion battery. Carbohydr. Polym. 214:328–336. https://doi.org/10.1016/j.carbpol.2019.03.049.10.1016/j.carbpol.2019.03.049Suche in Google Scholar PubMed

Wu, X., Chen, Y., Ji, G., Wamg, G., Gong, Y. (2021a) Spatial concentration, impact factors and prevention-control measures of PM 2.5 pollution in China. Natural Hazards. 86:1–18. https://doi.org/10.1007/s11069-016-2697-y.10.1007/s11069-016-2697-ySuche in Google Scholar

Wu, P., Fang, Z., Luo, H., Zheng, Z., Zhu, K., Yang, Y., Zhou, X. (2021b) Comparative analysis of indoor air quality in green office buildings of varying star levels based on the grey method. Build Environ. 195:107690. https://doi.org/10.1016/j.buildenv.2021.107690.10.1016/j.buildenv.2021.107690Suche in Google Scholar

Wu, W., Sota, H., Hirogaki, T., Aoyama, E. (2021c) Investigation of air filter Properties of nanofiber non-woven fabric manufactured by a modified melt-blowing method along with flash spinning method. Precis Eng. 68:187–196. https://doi.org/10.1016/j.precisioneng.2020.12.010.10.1016/j.precisioneng.2020.12.010Suche in Google Scholar

Yang, E., Qin, X., Wang, S. (2008) Electrospun crosslinked polyvinyl alcohol membrane. Mater. Lett. 62:3555–3557. https://doi.org/10.1016/j.matlet.2008.03.049.10.1016/j.matlet.2008.03.049Suche in Google Scholar

Zhang, L., Menkhaus, T.J., Hao, F. (2008) Fabrication and bioseparation studies of adsorptive membranes/felts made from electrospun cellulose acetate nanofibers. Journal of Membrane Science. 319:176–184. https://doi.org/10.1016/j.memsci.2008.03.030.10.1016/j.memsci.2008.03.030Suche in Google Scholar

Zhang, H., Du, Z., Jiang, Y., Yu, Q. (2012) Preparation and characterization of grafting polyacrylamide from PET films by SI‐ATRP via water-borne system. J. Appl. Polym. Sci. 126:1941–1955. https://doi.org/10.1002/app.36865.10.1002/app.36865Suche in Google Scholar

Zong, H., Xia, X., Liang, Y., Dai, S., Alsaedi, A., Hayat, T., Kong, F., Pan, J.H. (2018) Designing function-oriented artificial nanomaterials and membranes via electrospinning and electrospraying techniques. Mater. Sci. Eng. C. 92:1075–1091. https://doi.org/10.1016/j.msec.2017.11.007.10.1016/j.msec.2017.11.007Suche in Google Scholar PubMed

Zhu, W., Huang, W., Zhou, W., Qiu, Z., Wang, Z., Li, H., Wang, Y., Li, J., Xie, Y. (2020) Sustainable and antibacterial sandwich-like Ag-Pulp/CNF composite paper for oil/water separation. Carbohydr. Polym. 245:116587. https://doi.org/10.1016/j.carbpol.2020.116587.10.1016/j.carbpol.2020.116587Suche in Google Scholar PubMed

Received: 2021-10-26
Accepted: 2022-01-20
Published Online: 2022-02-01
Published in Print: 2022-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Chemical pulping
  3. The effects of high alkali impregnation and oxygen delignification of softwood kraft pulps on the yield and mechanical properties
  4. Bleaching
  5. Evaluation of pulp and paper properties produced from two new bleaching sequences
  6. Mechanical pulping
  7. The effects of wood chip compression on cellulose hydrolysis
  8. Physical meaning of cutting edge length and limited applications of Specific Edge Load in low consistency pulp refining
  9. Paper technology
  10. Enhancement in tissue paper production by optimizing creeping parameters such as application of various blade material (MOC) and creep pocket geometry
  11. Paper physics
  12. The effect of some office papers quality characteristics on offset printing process
  13. Paper chemistry
  14. Application of hydrophobically modified hydroxyethyl cellulose-methyl methacrylate copolymer emulsion in paper protection
  15. Application of cyclohexene oxide modified chitosan for paper preservation
  16. Application of carboxymethyl cellulose-acrylate-OVPSS graft copolymer emulsion in paper reinforcement and protection
  17. Coating
  18. Application of BBR-DCMC/KH-791-SiO2/HPDSP multifunctional protective fluid in paper reinforcement and protection
  19. Nanotechnology
  20. Research on ink blot evaluation of aged paper before and after restoration
  21. Chemical technology/modifications
  22. Physical properties of kraft pulp oxidized by hydrogen peroxide under mildly acidic conditions
  23. Miscellaneous
  24. High calcium content of Eucalyptus dunnii wood affects delignification and polysaccharide degradation in kraft pulping
  25. Refining gentleness – a key to bulky CTMP
  26. Electrospinning hydrophobically modified polyvinyl alcohol composite air filter paper with water resistance and high filterability properties
  27. Hydroxypropyl methylcellulose films reinforced with cellulose micro/nanofibrils: study of physical, optical, surface, barrier and mechanical properties
  28. Effects of localized environment on the eucalypt clones quality aiming kraft pulp production
  29. Oxidation process concept to produce lignin dispersants at a kraft pulp mill
Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/npprj-2021-0066/html
Button zum nach oben scrollen