Home Crystal structure of methyl-2-methyl-4-(2-oxo-2-phenylethyl)-5-phenyl-1H-pyrrole-3-carboxylate, C21H19NO3
Article Open Access

Crystal structure of methyl-2-methyl-4-(2-oxo-2-phenylethyl)-5-phenyl-1H-pyrrole-3-carboxylate, C21H19NO3

  • Gadada Naganagowda , Thabo Joel Mahlaka and Reinout Meijboom EMAIL logo
Published/Copyright: November 16, 2016

Abstract

C21H19NO3, monoclinic, P21/n (no. 14), a = 10.137(2) Å, b = 12.3205(18) Å, c = 14.700(3) Å, β = 106.432(1)°, V = 1760.9(6) Å3, Z = 4, Rgt(F) = 0.0511, wRref(F2) = 0.1808, T = 293 K.

CCDC no.:: 1420772

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1

Data collection and handling.

Crystal:Colourless prism
Size:0.20 × 0.20 × 0.20 mm
Wavelength:Mo Kα radiation (0.71075 Å)
μ:0.8 cm−1
Diffractometer, scan mode:Rigaku CCD, φ and ω
2θmax, completeness:55°, >99%
N(hkl)measured, N(hkl)unique, Rint:9945, 4030, 0.037
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 2909
N(param)refined:226
Programs:Sir92 [26], Crystal Structure [27], SHELX [28]
Table 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
O10.27793(16)0.25321(10)1.14220(9)0.0550(4)
O2−0.07988(17)0.27786(11)1.08119(12)0.0637(5)
O3−0.19384(16)0.37749(11)1.16108(11)0.0575(4)
N10.14082(16)0.58495(11)1.21518(10)0.0401(4)
C10.02765(19)0.52695(13)1.21638(12)0.0388(4)
C2−0.0593(3)0.56050(17)1.27746(15)0.0535(5)
C30.01822(18)0.44248(13)1.15224(12)0.0368(4)
C4−0.0863(2)0.35798(14)1.12689(13)0.0427(5)
C5−0.2987(3)0.2949(2)1.1419(3)0.0741(8)
C60.13031(18)0.45162(13)1.11203(11)0.0364(4)
C70.1487(2)0.38174(13)1.03292(12)0.0391(4)
C80.19889(19)0.26766(13)1.06336(12)0.0380(4)
C90.15498(19)0.17520(13)0.99565(12)0.0393(4)
C100.0592(3)0.18690(17)0.90722(14)0.0571(6)
C110.0190(3)0.09870(19)0.84799(16)0.0722(8)
C120.0732(3)−0.00235(19)0.87543(17)0.0706(8)
C130.1666(4)−0.01561(17)0.96217(18)0.0751(8)
C140.2075(3)0.07227(16)1.02163(16)0.0630(7)
C150.20615(19)0.54096(13)1.15281(12)0.0371(4)
C160.32817(19)0.59416(15)1.13870(12)0.0415(4)
C170.4330(2)0.53439(17)1.11884(13)0.0492(5)
C180.5490(3)0.5857(3)1.10801(16)0.0635(6)
C190.5626(3)0.6963(3)1.11660(18)0.0709(7)
C200.4596(3)0.7563(2)1.13637(19)0.0705(7)
C210.3427(3)0.70704(17)1.14685(16)0.0573(6)
H10.16850.64201.24900.0481*
H2A−0.14560.58781.23850.0643*
H2B−0.01310.61631.32030.0643*
H2C−0.07560.49911.31310.0643*
H5A−0.33610.28641.07460.0889*
H5B−0.37060.31581.16900.0889*
H5C−0.25930.22741.16920.0889*
H7A0.21400.41651.00520.0469*
H7B0.06160.37700.98410.0469*
H100.02180.25490.88790.0685*
H11−0.04510.10770.78910.0866*
H120.0464−0.06150.83510.0848*
H130.2027−0.08400.98120.0901*
H140.27170.06231.08030.0756*
H170.42510.45931.11280.0591*
H180.61840.54491.09470.0762*
H190.64080.73041.10910.0851*
H200.46900.83131.14280.0846*
H210.27340.74881.15940.0687*

Source of material

Anhydrous InCl3 (22 mg, 10 mmol) and NH4OAc (85 mg, 1.1 mmol) were added to a mixture of 1,2-dibenzoyl ethylene (1 mmol) and a methyl acetoacetate compound (1 mmol) in dry THF (15 mL). The reaction mixture was stirred at room temperature. After complete disappearance of the starting material (monitored by TLC using methanol/chloroform, 1:9), the solvent was evaporated in a rotary evaporator. The reaction mixture was diluted with water (10 mL) and extracted with CHCl3 (25 mL). The organic layer was separated, washed with brine, and then dried over anhydrous Na2SO4. Removal of the solvent resulted in the crude product, which was chromatographed over silica gel using petroleum ether and increasing proportions of chloroform as eluent to get the title compound. The light yellowish crystals of the title compound were obtained by slow evaporation of a solvent solution at room temperature. 319 mg (96%); m.p. 158–160 °C, Rf 0.2 (chloroform/petroleum ether, 3:1). IR (KBr)/cm-1 3249 (N—H), 1702 (C—O), 1658 (C—O), 1446, 1344, 1260, 1220, 1140, 1094. 1H-NMR (400 MHz, CDCl3) δ: 8.40 (br s, NH), 8.06 (d, J = 7.2, 2H, ArH), 7.56 (t, J = 7.6, 1H, ArH), 7.46 (t, J = 8.0, 2H, ArH), 7.31, −7.21 (m, 7H, ArH), 4.42 (s, 2H, −C(O)CH2−), 3.54 (s, 3H, −OCH3), 2.51 (s, 3H, pyrrole ring 2-CH3). 13C-NMR (125 MHz, CDCl3) δ: 199.2, 165.9, 137.5, 136.4, 132.8, 132.0, 129.8, 128.8, 128.5, 128.2, 127.3, 127.2, 115.0, 111.6, 50.4, 36.4, 14.0. Anal. Calc. for C21H19NO3: C 75.66, H 5.74, N 4.20. Found: C 75.61, H 5.71, N 4.19%.

Experimental details

The structure was solved by direct method [26] and expanded using Fourier techniques. Carbon-bound hydrogen atoms were placed in calculated positions (C—H = 0.95 Å for aromatic carbon atoms and C—H = 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C).

Discussion

Tetra-substituted pyrroles were prepared from 1,2-dibenzoyl ethylene and methyl acetoacetate employing NH4OAc as a nitrogen source, through a combination of Michael addition and Paal–Knorr methods [1; 2; 3]. The pyrrole [4; 5; 6; 7] ring is one of the most common skeletal features found in heterocycles and natural products [8; 9; 10]. Generally, pyrroles possess a broad spectrum of biological activities such as antimicrobial [11], telomerase inhibitory [12], antifungal [13], cardiotonic [14], pheromonal [15], and phytotoxic effects [16]. The classical approaches for synthesizing pyrroles are Knorr [17; 18], Hantzsch [19; 20; 21], and Paal-Knorr [1; 2; 3] methods. A whole new library of pyrrole derivatives can thus be prepared from commercially available starting materials. Typical examples of such derivatives reported being; Ethyl 2,5-di-tert-butyl-5-ethoxy-4-oxo-4,5-dihydro-1H-pyrrole-3-carboxylate [22], Ethyl 1,4-bis(4-chlorophenyl)-2-methyl-1H-pyrrole-3-carboxylate [23], Methyl 1-benzyl-5-methyl-2,4-diphenyl-1H-pyrrole-3-carboxylate [24] and 4-(3,3,4,4,5,5-hexafluoro-2-(5-(4-methoxyphenyl)-2-methylthiophene-3-yl)cyclopent-1-enyl)-1,5-dimethyl-1H-pyrrole-2-carbonitrile [25]. All bond lengths and angle in the title molecule (cf. the figure) are in the normal ranges.

Acknowledgements

The authors gratefully acknowledge financial assistance from the University Research Council of the University of Johannesburg.

References

1 Bharadwaj, A. R.; Scheidt, K. A.: Catalytic multicomponent synthesis of highly substituted pyrroles utilizing a one-pot Sila-Stetter/Paal-Knorr strategy. Org. Lett. 6 (2004) 2465–2468.10.1021/ol049044tSearch in Google Scholar PubMed

2 Minetto, G.; Raveglia, L. F.; Taddei, M.: Microwave-assisted Paal-Knorr reaction. A rapid approach to substituted pyrroles and furans. Org. Lett. 6 (2004) 389–392.10.1021/ol0362820Search in Google Scholar PubMed

3 Banik, B. K.; Samajdar, S.; Banik, I. J.: Simple synthesis of substituted pyrroles. J. Org. Chem. 69 (2004) 213–216.10.1021/jo035200iSearch in Google Scholar PubMed

4 Toube, T. P.: Acylpyrroles. In: Chemistry of heterocyclic compounds: pyrroles, part 2: The synthesis, reactivity, and physical properties of substituted pyrroles, Volume 48 (Ed. R. A. Jones), p. 1–129, Wiley, New York, NY, 1992.10.1002/9780470187340.ch1Search in Google Scholar

5 Sundberg, R. J.: In Comprehensive Heterocyclic Chemistry; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V.; Eds.; Pergamon: Oxford, vol-2 (1996) 119.Search in Google Scholar

6 Gilchrist, T. L.: Heterocyclic Chemistry, 3rd edition Addison Wesley Longman, Essex, 1997.Search in Google Scholar

7 Joule, J. A.; Mills, K.: Heterocyclic Chemistry, Blackwell Science: Oxford, 2000; Chapter 13.Search in Google Scholar

8 Fan, H.; Peng, J.; Hamann, M. T.; Hu, J. F.: Lamellarins and related pyrrole-derived alkaloids from marine organisms. Chem. Rev. 108 (2008) 264–287.10.1021/cr078199mSearch in Google Scholar PubMed PubMed Central

9 Gribble, G. W.: In Comprehensive Heterocyclic Chemistry; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V.: Eds.; Pergamon: Oxford. Vol. 2, 207–257, 1996.Search in Google Scholar

10 Fürstner, A.: Chemistry and biology of roseophilin and the prodigiosin alkaloids: A survey of the last 2500 years. Angew. Chem. Int. Ed. 42 (2003) 3582–3603.10.1002/anie.200300582Search in Google Scholar PubMed

11 Raimondi, M. V.; Cascioferro, S.; Schillaci, D.; Petruso, S.: Synthesis and antimicrobial activity of new bromine-rich pyrrole derivatives related to monodeoxypyoluteorin. Eur. J. Med. Chem. 41 (2006) 1439–1445.10.1016/j.ejmech.2006.07.009Search in Google Scholar PubMed

12 Shi, D. F.; Wheelhouse, R. T.; Sun, D. Y.; Hurley, L. H.: Quadruplex-interactive agents as telomerase inhibitors: Synthesis of porphyrins and structure activity relationship for the inhibition of telomerase. J. Med. Chem. 44 (2001) 4509–4523.10.1021/jm010246uSearch in Google Scholar PubMed

13 Onnis, V.; De Logu, A.; Cocco, M. T.; Fadda, R.; Meleddu, R.; Congiu, C.: 2-Acylhydrazino-5-arylpyrrole derivatives: synthesis and antifungal activity evaluation. Eur. J. Med. Chem. 44 (2009) 1288–1295.10.1016/j.ejmech.2008.08.003Search in Google Scholar PubMed

14 Obame, F. N.; Plin-Mercier, C.; Assaly, R.; Zini, R.; DuboisRande, J. L.; Berdeaux, A.; Morin, D.: Cardioprotective effect of morphine and a blocker of glycogen synthase kinase 3 beta SB216763 [3-(2,4-dichlorophenyl)-4(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione], via inhibition of the mitochondrial permeability transition pore. J. Pharmacol. Exp. Ther. 326 (2008) 252–258.10.1124/jpet.108.138008Search in Google Scholar PubMed

15 Caputo, J. F.; Caputo, R. E.; Brand, J. M.: Significance of the pyrrolic nitrogen atom in receptor recognition of Atta texana (Buckley) (Hymenoptera:Formicidae) trail pheromone and parapheromones. J. Chem. Ecol. 5 (1979) 273–278.10.1007/BF00988241Search in Google Scholar

16 Zhao, Y.; Li, Y.; Ou, X.; Zhang, P.; Huang, Z.; Bi, F.; Huang, R.; Wang, Q.: Synthesis, insecticidal, and acaricidal activities of novel 2-aryl-pyrrole derivatives containing ester groups. J. Agric. Food Chem. 56 (2008) 10176–10182.10.1021/jf802464dSearch in Google Scholar

17 Alberola, A.; Ortega, A. G.; Sadaba, M. L.; Sanudo, C.: Versatility of Weinreb amides in the Knorr pyrrole synthesis. Tetrahedron. 55 (1999) 6555–6566.10.1016/S0040-4020(99)00289-6Search in Google Scholar

18 Castro, A. J.; Giannini, D. D.; Greenlee, W. F.: Synthesis of a 2,3′-bipyrrole. Denitrosation in the Knorr pyrrole synthesis. J. Org. Chem. 35 (1970) 2815–2816.10.1021/jo00833a080Search in Google Scholar

19 Hong, D.; Zhu, Y.; Li, Y.; Lin, X.; Lu, P.; Wang, Y.: Three-component synthesis of polysubstituted pyrroles from a-diazoketones, nitroalkenes, and amines. Org. Lett. 13 (2011) 4668–4671.10.1021/ol201891rSearch in Google Scholar

20 Matiychuk, V. S.; Martyak, R. L.; Obushak, N. D.; Ostapiuk, Y. V.; Pidlypnyi, N. I.: 3-Aryl-2-Chloropropanals in Hantzsch synthesis of pyrroles. Chem. Heterocycl. Comp. 40 (2004) 1218–1219.10.1023/B:COHC.0000048299.17625.7fSearch in Google Scholar

21 Palacios, F.; Aparico, D.; de los Santos, J. M.; Vicario, J.: Regioselective alkylation reactions of hydrazones derived from phosphine oxides and phosphonates. Synthesis of phosphorus substituted 1-amino-pyrrolones, pyridinones and pyrroles. Tetrahedron 57 (2001) 1961–1972.10.1016/S0040-4020(01)00033-3Search in Google Scholar

22 Rosen, G. M.; Muralidharan, S.; Zavalij, P. Y.; Fletcher, S.; Kao, J. P.: Ethyl 2,5-di-tert-butyl-5-ethoxy-4-oxo-4,5-dihydro-1H-pyrrole-3-carboxylate. Acta Crystallogr. E69 (2013) o878.10.1107/S1600536813012282Search in Google Scholar PubMed PubMed Central

23 Nandeesh, K. N.; Chandra, Mahendra, M.; Palani, K.; Mantelingu, K.: Ethyl 1,4-bis(4-chlorophenyl)-2-methyl-1H-pyrrole-3-carboxylate. Acta Crystallogr. E69 (2013) o1269.10.1107/S1600536813019247Search in Google Scholar PubMed PubMed Central

24 Lopchuk, J. M.; Gribble, G. W.; Jasinski, J. P.: Methyl 1-benzyl-5-methyl-2,4-diphenyl-1H-pyrrole-3-carboxylate. Acta Crystallogr. E70 (2014) o338–o33910.1107/S1600536814003316Search in Google Scholar PubMed PubMed Central

25 Pu, S.; Liu, G.; Shen, L.; Xu, J.: Efficient synthesis and properties of isomeric photochromic diarylethenes having a pyrrole unit. Org. Lett. 9 (2007) 2139–2142.10.1021/ol070622qSearch in Google Scholar PubMed

26 SIR92: Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M.; Polidori, G.; Camalli, M.: J. Appl. Cryst. 27 (1994) 435.10.1107/S0021889894000221Search in Google Scholar

27 Crystal Structure 4.0: Crystal Structure Analysis Package, Rigaku Corporation. Tokyo 196-8666, Japan, 2000–2010.Search in Google Scholar

28 Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

Received: 2016-7-18
Accepted: 2016-10-25
Published Online: 2016-11-16
Published in Print: 2017-1-1

©2016 Gadada Naganagowda et al., published by De Gruyter.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Articles in the same Issue

  1. Cover and Frontmatter
  2. Editorial
  3. Twenty years of crystal structure publication and the road ahead
  4. Crystal Structures
  5. Crystal structure of poly-[triaqua-(μ4-5′-carboxy-[1,1′-biphenyl]-2,3,3′-tricarboxylate-κ6O1,O2:O3,O4:O5:O6)praseodymium(III), C16H13O11Pr
  6. Crystal structure of (R)-1-(2,3-dihydro-1H-pyrrolizin-5-yl)-2,3-dihydroxypropan-1-one, C10H13NO3
  7. Crystal structure of (E)-4-nitro-2-((2-phenoxyphenylimino)methyl)phenol, C19H14N2O4
  8. Crystal structure of 3,3′-di(furan-2-yl)-5,5′-bi-1,2,4-triazine
  9. Crystal structure of 11-(p-coumaroyloxy)-tremetone, C22H20O5
  10. The crystal structure of 1,3-bis(2,6-diiso-propylphenyl)imidazol-2-ylidene)-dibromido-(1-methyl-1H-imidazole-κ1N)palladium(II) – ethyl acetate – water (1/1/1), C31H42Br2N4Pd
  11. Crystal structure of 2-((3-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)methylene)-1H-indene-1,3(2H)-dione, C28H19N5O2
  12. Crystal structure of 2-(5-(4-fluorophenyl)-3-p-tolyl-4,5-dihydro-1H-pyrazol-1-yl)-4-(5-methyl-1-p-tolyl-1H-1,2,3-triazol-4-yl)thiazole, C29H25FN6S
  13. Crystal structure of poly-[aqua-(μ7-benzene-1,3,5-tricarboxylato)-(μ3-1,2,4-triazol-1-ido)dicobalt(II)], C11H7Co2N3O7
  14. Crystal constructure of 16(S)-methyl-6α-carboxy-1, 15-dioxo-6, 7-seco-ent-kaur-2-en-7, 20-olide, C20H24O6
  15. Crystal structure of 1-(benzo[d]thiazol-2-yl)-3-phenylthiourea, C14H11N3S2
  16. Crystal structure of 3-(2-bromophenyl)-1,1-dimethylthiourea, C9H11BrN2S
  17. Crystal structure of 1-(adamantan-1-yl)-3-(3-chlorophenyl)thiourea, C17H21ClN2S
  18. Crystal structure of 3-(adamantan-1-yl)-1-(4-bromophenyl)urea, C17H21BrN2O
  19. Crystal structure of (Z)-Ethyl 2-cyano-2-(3-phenylthiazolidin-2-ylidene) acetate, C14H14N2O2S
  20. Crystal structure of methyl 2b-ethyl-1a,2a,2b,2b1,3,5,10,11-octahydro-1H-oxireno[2′,3′:6,7]indolizino[8,1-cd]carbazole-4-carboxylate, C21H24N2O3
  21. Crystal structure of 2-amino-5-oxo-4-(3,4,5-trimethoxy-phenyl)-4,5,6,7-tetrahydro-cyclopenta[b]pyran-3-carbonitrile, C18H18N2O5
  22. Crystal structure of 1,2,3-trimethyl-2,3-dihydro-1H-perimidine, C14H16N2
  23. Crystal structure of bis(2,6-dihydroxymethyl)pyridine-κ3N,O,O′)-bis(μ2-6-chloropyridin-2-olato-κ3N,O:O)-bis(6-chloropyridin-2-olato-κO)-bis(nitrato-κ2O,O′)digadolinium(III), C34H30Cl4Gd2N8O14
  24. Crystal structure of 8-isopropyl-8-aza-bicyclo[3.2.1]octan-3-yl 3-hydroxy-2-phenylpropanoate, C19H27NO3
  25. Crystal structure of 1-methyl-3-[((naphthalen-2-ylsulfonyl)oxy)imino]indolin-2-one, C19H14N2O4S
  26. Crystal structure (7,8-bis(diisopropylphosphino)-7,8-dicarba-nido-undecaborane-κ2P,P′)-(benzoato-κ2O,O′)nickel(II), C21H42B9NiO2P2
  27. Crystal structure of methyl-2-methyl-4-(2-oxo-2-phenylethyl)-5-phenyl-1H-pyrrole-3-carboxylate, C21H19NO3
  28. Crystal structure of 2-[(2-oxo-thiazolidine-3-carbonyl)sulfamoyl]-methy-benzoic acid methyl ester, C13H14N2O6S2
  29. Crystal structure of N′-(2-phenylacetyl)thiophene-2-carbohydrazide monohydrate, C13H14N2O3S
  30. Crystal structure of 1,1′-(hexane-1,6-diyl)bis(3-methyl-1H-imidazol-3-ium) bis(hexafluoro phosphate), C14H24F12N4P2
  31. Crystal structure of di-μ-chlorido-bis[1,2-bis(dicyclohexylphosphino)-1,2-dicarba-closo-dodecaborane-κ2P,P′]zinc(II), C52H108B20Cl2P4Zn2
  32. Crystal structure of dibromido-bis[μ-1-[(2-methyl-1H-benzoimidazol-1-yl)methyl]-1H-benzotriazole-κN]mercury(II), C30H26Br2HgN10
  33. Crystal structure of bis(μ-nitrato-κ2O:O)-bis[1,2-bis(diphenylphosphino)-1,2-dicarba-closo-dodecaborane-κ2P,P′]disilver(I) dicloromethane monosolvate, C54H64B20Cl4O6P4Ag2
  34. Crystal structure of dinuclear dichloridobis(dimethylformamide-kO)bis[μ2-3-(2-oxyphenyl)-5-(pyrazin-2-yl)-1,2,4-triazol-1ido-κ4-O,N:N′,N′′(2)]diiron(III) dimethylformamide (1/1), C36H42Cl2Fe2N14O6
  35. Crystal structure of diaqua-dinitrato-κO-bis(4-(1H-pyrazol-3-yl)pyridine-κN)manganese(II), C16H18MnN8O8
  36. Crystal structure of (Z)-6-methoxy-2-(2,2,2-trifluoro-1-hydroxyethylidene)-2,3-dihydro-1H-inden-1-one, C12H6F6O3
  37. Crystal Structure of 4-(2-chloroacetamido)pyridinium chloride monohydrate, C7H10Cl2N2O2
  38. Crystal structure of 2-amino-4-(4-chloro-phenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile, C16H13ClN2O2
  39. Crystal structure of (E)-1-(2-(thiophen-2-ylmethylene)hydrazinyl)phthalazine hydrochloride–ethanol (1/1), C15H17ClN4OS
  40. Crystal structure of N,N-diethyl-5-bromo-3,4-dihydro-2,4-dioxopyrimidine-1(2H)-carboxamide, C9H12BrN3O3
  41. Crystal structure of 3-(2-(4-chlorophenyl)-3-hydroxy-3,3-diphenylpropyl)-1,1-dimethylurea, C24H25ClN2O2
  42. Crystal structure of 3-(4-chlorophenyl)-1,1-dimethylthiourea, C9H11ClN2S
  43. Crystal structure of 2-amino-4-(4-bromo-phenyl)-7-methyl-5-oxo-4H,5H-pyrano[4,3-b]pyran-3-carbonitrile, C16H11BrN2O3
  44. Crystal structure of 4-(3,4-dimethyl-phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydro-quinoline-3-carboxylic acid ethyl ester, C21H25NO3
  45. Crystal structure of (E)-2-({4-hydroxy-5-methoxy-3-[(4-methyl-1-piperazinyl)methyl]phenyl} methylidene)-1-indanone, C23H26N2O3
  46. Crystal structure of tripropylammonium 2′-carboxy-[1,1′-biphenyl]-2-carboxylate – [1,1′-biphenyl]-2,2′-dicarboxylic acid (2/1), C60H72N2O12
  47. Crystal structure of catena-poly-{aqua-[μ2-1,2-bis((1H-imidazol-1-yl)methyl)benzene-κ2N:N′]-[μ2-4,4′-(dimethylsilanediyl)dibenzato-κ3O,O′:O′]nickel(II)}, C30H30N4NiO5Si
  48. The crystal structure of 1-(4-bromophenyl)-2-(4-(4-fluorophenyl)piperazin-1-yl)ethanol, C18H20BrFN2O1
  49. Crystal structure of trimethylammonium 4-((4-carboxyphenyl)sulfonyl)benzoate, C17H19NO6S
  50. Crystal structure of syn-2,4-di-o-tolylpentane-2,4-diol, C19H24O2
  51. Crystal structure of 2-[3,5-bis(trifluoromethyl)benzylsulfanyl]-5-(5-bromothiophen-2-yl)-1,3,4-oxadiazole, C15H7BrF6N2OS2
  52. Crystal structure of (E)-3-((naphthalen-1-ylimino)methyl)-4-nitrophenol, C17H12N2O3
  53. Crystal structure of 2-dichloromethyl-2-p-nitrophenyl-1,3-dioxolane, C10H9Cl2NO4
  54. Crystal structure of (1,4,8,11-tetraazacyclotetradecane)palladium(II) tetracyanopalladate(II), C14H24N8Pd2
  55. Crystal structure of 2-(4-oxo-2-thioxothiazolidin-3-yl)acetic acid monohydrate, C5H7NO4S2
  56. Crystal structure of a P4-bridged (η5-pentamethyl-cyclopentadienyl)(η5-adamantylcyclopentadienyl) titanium(III)complex, C50H66P4Ti2
  57. Crystal structure of cis-bis(2,2′-bipyrimidine-κ2N,N′)bis(thiocyanato-κN)nickel(II), C18H12N10NiS2
  58. Crystal structure of cis-bis(2,2′-bipyridine-κ2N,N′)dibromidomanganese(II), C20H16Br2MnN4
  59. Crystal structure of cis-bis(2,2′-bipyridine-κ2N,N′)bis(thiocyanato-κN)nickel(II), C22H16N6NiS2
  60. Crystal structure of trans-dibromido(1,4,8,11-tetraazacyclotetradecane)nickel(II), C10H24Br2N4Ni
  61. Crystal structure of cis-tetrabromidobis(pyridine-κN)platinum(IV), C10H10Br4N2Pt
  62. Crystal structure of (E)-5-((4-chlorophenyl)diazenyl)-2-(5-(4-fluorophenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl)-4-methylthiazole, C23H17ClFN5S2
  63. The crystal structure of 3-((1R,2S)-1-methylpyrrolidin-1-ium-2-yl)pyridin-1-ium tetrachloridocobaltate(II) monohydrate, C10H18Cl4CoN2O
Downloaded on 16.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2016-0149/html?lang=en&srsltid=AfmBOopoY55P-n5jN23RxVi42bn23qtiXE_trUA7xnFOHJS2DdPm1c96
Scroll to top button