Startseite Technik Mechanical behavior of high-strength bolts under different strain rates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mechanical behavior of high-strength bolts under different strain rates

  • Timo Roth

    Timo Roth, born in 1993, studied mechanical engineering from 2012 to 2015 at Darmstadt University of Applied Sciences, Germany. From 2015 till 2017, he completed a master’s degree in mechanical engineering at Clausthal University of technology, Germany. From 2017 till 2019, he worked as a project engineer for structural durability at IME Aachen GmbH, Germany. Since 2020, he is working as a research assistant at the Institute for Machine Elements, Design and Manufacturing at Technical University Bergakademie Freiberg, Germany.

    EMAIL logo
    , Robert Szlosarek

    Robert Szlosarek, born in 1987, studied mechatronics from 2005 to 2010 at the University of Applied Sciences in Zittau, Germany. Afterward, he did his Ph.D. at the Graz University of Technology, Austria. Currently, he is working as a researcher at the Institute for Machine Elements, Design and Manufacturing at Technical University Bergakademie Freiberg, Germany. His main field of interest is the stress and fatigue analysis of machine elements.

    ORCID logo
    und Matthias Kröger

    Matthias Kröger, born in 1968, studied mechanical engineering from 1988 to 1994 at the University of Hannover, Germany. At the same university, he finished his Ph.D. in 2001. From 1999 to 2008, he was the Engineer in Chief of the Institute of Mechanics at the University of Hannover, Germany. Since 2008, he is full professor at Technical University Bergakademie Freiberg, Germany. His fields of research are tribology, fatigue, and crashworthiness.

Veröffentlicht/Copyright: 27. Juni 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Due to their advantages, bolted connections are irreplaceable in machine, plant, and vehicle construction. High-strength bolts can be subjected to (high) dynamic loads during operation. Unfortunately, the knowledge of the strain rate dependence of the mechanical properties of high-strength bolts is very limited. Therefore, tensile tests were carried out at 11 different strain rates between 0.001 and 30 s−1 on high-strength bolts of size M6 of strength class 8.8. In addition, notch-free tensile specimens were manufactured from the bolts and also loaded at different strain rates in order to quantify the influence of the thread on the mechanical properties of the material. The tensile tests were analyzed in terms of yield strength, ultimate tensile strength, elongation at fracture, and energy absorption capacity. For this purpose, a test setup was developed and manufactured on which the bolts were axially loaded until fracture. It was found that the tensile strength and yield strength of bolts only increase above a certain strain rate. The elongation at fracture of complete bolts and also unnotched specimens is independent of the strain rate. For unnotched specimens, both the strength is dependent on the strain rate over the investigated strain rate range.


Corresponding author: Timo Roth, Institute for Machine Elements, Design and Manufacturing, TU Bergakademie Freiberg University, Freiberg, Germany, E-mail:

About the authors

Timo Roth

Timo Roth, born in 1993, studied mechanical engineering from 2012 to 2015 at Darmstadt University of Applied Sciences, Germany. From 2015 till 2017, he completed a master’s degree in mechanical engineering at Clausthal University of technology, Germany. From 2017 till 2019, he worked as a project engineer for structural durability at IME Aachen GmbH, Germany. Since 2020, he is working as a research assistant at the Institute for Machine Elements, Design and Manufacturing at Technical University Bergakademie Freiberg, Germany.

Robert Szlosarek

Robert Szlosarek, born in 1987, studied mechatronics from 2005 to 2010 at the University of Applied Sciences in Zittau, Germany. Afterward, he did his Ph.D. at the Graz University of Technology, Austria. Currently, he is working as a researcher at the Institute for Machine Elements, Design and Manufacturing at Technical University Bergakademie Freiberg, Germany. His main field of interest is the stress and fatigue analysis of machine elements.

Matthias Kröger

Matthias Kröger, born in 1968, studied mechanical engineering from 1988 to 1994 at the University of Hannover, Germany. At the same university, he finished his Ph.D. in 2001. From 1999 to 2008, he was the Engineer in Chief of the Institute of Mechanics at the University of Hannover, Germany. Since 2008, he is full professor at Technical University Bergakademie Freiberg, Germany. His fields of research are tribology, fatigue, and crashworthiness.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interests: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: The raw data can be obtained on request from the corresponding author.

References

[1] J. Trajkovski and R. Kunc, “Strain rate sensitivity of low carbon threaded steel rods of grade 4.6,” Materials, vol. 17, no. 24, p. 6228, 2024, https://doi.org/10.3390/ma17246228.Suche in Google Scholar PubMed PubMed Central

[2] C. C. Li and C. Doucet, “Performance of D-bolts under dynamic loading,” Rock Mech Rock Eng, vol. 45, no. 2, pp. 193–204, 2012, https://doi.org/10.1007/s00603-011-0202-1.Suche in Google Scholar

[3] A. P. Mouritz, “Failure mechanisms of mild steel bolts under different tensile loading rates,” Int. J. Impact Eng., vol. 15, no. 3, pp. 311–324, 1994, https://doi.org/10.1016/S0734-743X(05)80020-X.Suche in Google Scholar

[4] T. Roth, M. Kröger, and A. Kleibl, “Steigerung der übertragbaren Lasten der Drehkranzverschraubung einer Baumaschine durch eine neuartige Anordnung der Schrauben,” in Schraubenverbindungen 2022, VDI Wissensforum GmbH, Düsseldorf, VDI Verlag, 2022, pp. 237–250.10.51202/9783181024034-237Suche in Google Scholar

[5] H. Neuber, Kerbspannungslehre, 1st ed, Berlin, Springer, 2001.10.1007/978-3-642-56793-3_1Suche in Google Scholar

[6] T. Reichert, W. Böhme, D. Siegele, M. Hug, and J. Schüler, “Stoßartige Belastung - Bruchmechanischer Festigkeitsnachweis für Maschinenbauteile unter stoßartigen Belastungen, Vorhaben Nr. 289, FKM Heft Nr. 315, 2012.Suche in Google Scholar

[7] S. Yang, Y. Zhu, R. Zhang, Y. Zhao, and H. Yang, “Rate-dependent behaviour of high-strength steel bolts,” J. Construct. Steel Res., vol. 215, 2024, Art. no. 108560, https://doi.org/10.1016/j.jcsr.2024.108560.Suche in Google Scholar

[8] M. Warren, A. Antoniou, and L. Stewart, “A review of experimentation and computational modeling of dynamic bolt fracture,” J. Construct. Steel Res., vol. 194, pp. 107293 1–12, 2022, https://doi.org/10.1016/j.jcsr.2022.107293.Suche in Google Scholar

[9] DIN, Deutsches Institut für Normung e.V., DIN EN ISO 898-1: Mechanische Eigenschaften von Verbindungselementen aus Kohlenstoffstahl und legiertem Stahl – Teil 1: Schrauben mit festgelegten Festigkeitsklassen – Regelgewinde und Feingewinde, Berlin, DIN, 2013.Suche in Google Scholar

[10] W. Schmidt, “Der Einfluß der Beanspruchungsgeschwindigkeit auf die Eigenschaften metallischer Werkstoffe,” Draht, vol. 42, no. 9, pp. 622–626, 1991.Suche in Google Scholar

[11] M. Schüle, “Experimentelle und numerische Untersuchungen zum Verhalten von Stählen unter schlagartiger Beanspruchung,” Dissertation, Universität Stuttgart, Stuttgart, 2001.Suche in Google Scholar

[12] P. W. Bridgman, Studies in Large Plastic Flow and Fracture: With Special Emphasis on the Effects of Hydrostatic Pressure, Cambridge, Massachusetts, Harvard University Press, 1964.10.4159/harvard.9780674731349Suche in Google Scholar

[13] M. Hahn, “Festigkeitsberechnung und Lebensdauerabschätzung für metallische Bauteile unter mehrachsig schwingender Beanspruchung,” Dissertation, Technische Universität Berlin, 1995.Suche in Google Scholar

[14] H. Fransplass, M. Langseth, and O. S. Hopperstad, “Tensile behaviour of threaded steel fasteners at elevated rates of strain,” Int. J. Mech. Sci., vol. 53, no. 11, pp. 946–957, 2011, https://doi.org/10.1016/j.ijmecsci.2011.07.006.Suche in Google Scholar

[15] DIN, Deutsches Institut für Normung e.V., DIN EN ISO 4017: Sechskantschrauben mit Gewinde bis Kopf – Produktklassen A und B, Berlin, DIN, 2011.Suche in Google Scholar

[16] F. Burgahn, “Einsinniges Verformungsverhalten und Mikrostruktur ausgewählter Stähle in Abhängigkeit von Temperatur und Verformungsgeschwindigkeit,” Dissertation, Universität Karlsruhe, Karlsruhe, 1991.Suche in Google Scholar

[17] DIN, Deutsches Institut für Normung e.V., DIN 50125: Prüfung metallischer Werkstoffe - Zugproben, Berlin, DIN, 2022.Suche in Google Scholar

[18] W. Böhme, M. Luke, J. G. Blauel, D.-Z. Sun, I. Rohr, and W. Harwick, “FAT-Richtlinie ‘Dynamische Werkstoffkennwerte für die Crashsimulation,” in Forschungsvereinigung Automobiltechnik: FAT-Schriftenreihe, vol. 211, Frankfurt, Main, FAT, 2007.Suche in Google Scholar

[19] W. Bleck, P. Larour, A. Bäumer, and J. Noack, “Einflüsse der Messtechnik auf die Ergebnisse von Hochgeschwindigkeitszugversuchen,” in Tagung Werkstoffprüfung 2004, Frankfurt, Deutsche Gesellschaft für Materialkunde e.V., 2004, pp. 45–54.Suche in Google Scholar

[20] W. Thomala, “Zur Tragfähigkeit von Schraube-Mutter-Verbindungen bei zügiger mechanischer Beanspruchung,” VDI-Z, vol. 123, no. 8, pp. 35–45, 1981.Suche in Google Scholar

[21] J. Aegerter, H. Bloching, and H.-M. Sonne, “Influence of the testing speed on the yield/proof strength: tensile testing in compliance with EN 10002-1,” Mater. Test., vol. 43, no. 10, pp. 393–403, 2001, https://doi.org/10.1515/mt-2001-431006.Suche in Google Scholar

[22] D. Findeisen, “Grundlegendes zur Steifigkeit von Werkstoffprüfmaschinen: Teil 2: Wechselwirkung zwischen Prüfantrieb und Prüfobjekt unter Maschineneinfluss,” Mater. Test., vol. 59, no. 4, pp. 386–394, 2017, https://doi.org/10.3139/120.111009.Suche in Google Scholar

[23] VDI, Verein Deutscher Ingenieure e.V., VDI 2230 Blatt 1: Systematische Berechnung Hochbeanspruchter Schraubenverbindungen - Zylindrische Einschraubenverbindungen, Berlin, Beuth Verlag, 2015.Suche in Google Scholar

[24] ISO, International Organization for Standardization, ISO 6892-1: Metallic Materials - Tensile Testing - Part 1: Method of Test at Room Temperature, Geneva, ISO, 2019.Suche in Google Scholar

[25] W. Schmidt, “Der Einfluß des zeitlichen Ablaufs der Beanspruchung auf die Eigenschaften metallischer Werkstoffe,” Draht, vol. 42, no. 6, pp. 442–446, 1991.Suche in Google Scholar

Published Online: 2025-06-27
Published in Print: 2025-08-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Influence of initial delamination length on the interlaminar fracture toughness energy – Mode I – of unidirectional GFRP
  3. Impact behavior of sandwich composites with S2-glass/epoxy and PVC foam under low velocity loading
  4. Cold deformation behavior and the microscopic mechanisms of a L605 centrifugal cast tube
  5. Experimental and numerical analysis of the life performance enhancement of rod ends used in automotive steering devices
  6. Uniaxial tensile and low cycle fatigue test for calibration of hardening rule parameters using inverse analysis and pipe shrinking simulation
  7. Effects of different gas mixtures and welding speeds on laser welding of AlMg1SiCu T6 aluminum alloys with filler metal
  8. Mechanical behavior of high-strength bolts under different strain rates
  9. Temperature–related assessment of the fatigue creep behavior of the additively manufactured magnesium alloy WE43 in the compression regime
  10. Wear test for 16MnCr5 with a spherical diamond-coated mounted point
  11. Weld properties of plasma arc joined austenitic stainless steels
  12. Comparison of disc brake pads for truck front wheels based on SAE standard experiments
  13. Friction and wear properties of Uhmwpe and Peek polymers
  14. Microstructural and mechanical characterization of fiber laser welded quench-partitioning steels
  15. Artificial neural network–infused polar fox algorithm for optimal design of vehicle suspension components
  16. Effects of co-fillers on the tensile and hardness properties of polymer composites
Heruntergeladen am 14.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mt-2025-0101/html
Button zum nach oben scrollen