Home Technology Variants of friction stir based processes: review on process fundamentals, material attributes and mechanical properties
Article
Licensed
Unlicensed Requires Authentication

Variants of friction stir based processes: review on process fundamentals, material attributes and mechanical properties

  • Manish Maurya

    Mr. Manish Maurya is pursuing his Doctorate degree at the National Institute of Technology, Patna (NITP), India. From 2012 to present, he has been working as an Assistant Professor in the Mechanical Engineering Department of the Accurate Institute of Management & Technology, Greater Noida, India. His research area mainly includes material fabrication and characterization, casting etc.

    EMAIL logo
    , Ambrish Maurya

    Dr. Ambrish Maurya is working as Assistant Professor in the Mechanical Engineering Department of National Institute of Technology, Patna (NITP), India. His research area mainly includes material fabrication, machining, characterization and casting etc.

    and Sudhir Kumar

    Dr. Sudhir Kumar is working as a Professor and Dean in Indraprastha Engineering College, Ghaziabad. His research area mainly includes material fabrication and characterization, casting and welding etc.

Published/Copyright: December 27, 2023
Become an author with De Gruyter Brill

Abstract

Friction stir-based variants have entirely changed the outdated component manufacturing method. Magnanimously, it has reached notable achievement in the joining, fabricating and processing of aluminum materials. This research article aims to review the various classifications of friction stir-based techniques. Friction stir-based techniques have improved the joining method along with microstructure and mechanical properties of the material. This article will enlighten the recent progress on friction stir additive manufacturing techniques applied on alloys or fabrication of composites, friction stir welding, additive friction stir deposition, friction stir processing and friction stir cladding. Mechanical properties, feasibility, applications, limitations and process parameters are discussed in details. This review article will help industry persons and academicians to know the process parameters of various techniques along with the outcomes and changes in mechanical and microstructural properties. In the last, challenges in variants of friction stir-based processes were also mentioned.


Corresponding author: Manish Maurya, Accurate Institute of Management and Technology, Greater Noida, Uttar Pradesh, 201308, India, E-mail:

About the authors

Manish Maurya

Mr. Manish Maurya is pursuing his Doctorate degree at the National Institute of Technology, Patna (NITP), India. From 2012 to present, he has been working as an Assistant Professor in the Mechanical Engineering Department of the Accurate Institute of Management & Technology, Greater Noida, India. His research area mainly includes material fabrication and characterization, casting etc.

Ambrish Maurya

Dr. Ambrish Maurya is working as Assistant Professor in the Mechanical Engineering Department of National Institute of Technology, Patna (NITP), India. His research area mainly includes material fabrication, machining, characterization and casting etc.

Sudhir Kumar

Dr. Sudhir Kumar is working as a Professor and Dean in Indraprastha Engineering College, Ghaziabad. His research area mainly includes material fabrication and characterization, casting and welding etc.

  1. Research ethics: The research ethics is strictly followed by the authors.

  2. Author contributions: All authors have equally contributed in the article.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: The author(s) received no financial support for the research, authorship, and/or publication of this article.

  5. Data availability: The data can be obtained on request from the corresponding author.

References

[1] M. Maurya, S. Kumar, and V. Bajpai, “Assessment of the mechanical properties of aluminium metal matrix composite: a review,” J. Reinf. Plast. Compos., vol. 38, no. 6, pp. 267–298, 2019, https://doi.org/10.1177/0731684418816379.Search in Google Scholar

[2] M. Maurya, S. Kumar, V. Bajpai, and N. K. Maurya, “Process parameters, development and applications of stir cast composite: a review,” Mater. Test., vol. 62, no. 2, pp. 196–208, 2020, https://doi.org/10.3139/120.111472.Search in Google Scholar

[3] U. Y. Tianyu, C. H. E. N. Mingjun, C. H. E. N., W. U. Zhuoru, and W. U., “Experimental and numerical study of deposition mechanisms for cold spray additive manufacturing process,” Chin. J. Aeronaut., vol. 35, no. 2, pp. 276–290, 2022, https://doi.org/10.1016/j.cja.2021.02.002.Search in Google Scholar

[4] C. Zeng, et al.., “Microstructure evolution of Al6061 alloy made by additive friction stir deposition,” Materials, vol. 15, no. 10, p. 3676, 2022, https://doi.org/10.3390/ma15103676.Search in Google Scholar PubMed PubMed Central

[5] E. Li, Z. Zhou, L. Wang, H. Shen, R. Zou, and A. Yu, “Particle scale modelling of melt pool dynamics and pore formation in selective laser melting additive manufacturing,” Powder Technol., vol. 397, no. 117012, 2022, https://doi.org/10.1016/j.powtec.2022.117789.Search in Google Scholar

[6] W. Zhao, C. Wu, and L. Shi, “The influence of acoustic antifriction on heat generation and material flow in ultrasonic-assisted friction stir welding,” Int. J. Adv. Des. Manuf. Technol., vol. 120, no. 3, pp. 2633–2654, 2022, https://doi.org/10.1007/s00170-022-08858-1.Search in Google Scholar

[7] D. White, “78. Object consolidation employing friction joining,” U.S. Patent, 1999;1. Available at: https://patents.google.com/patent/US6457629B1/en.Search in Google Scholar

[8] R. S. Mishra, R. S. Haridas, and P. Agrawal, “Friction stir-based additive manufacturing,” Sci. Technol. Weld. Join., vol. 27, no. 3, pp. 141–165, 2022, https://doi.org/10.1080/13621718.2022.2027663.Search in Google Scholar

[9] P. H. Lequeu, et al.., Powerpoint Presentation on: High Performance Friction Stir Welded Structures Using Advanced Alloys, WA, Aeromat Conf. Seattle, 2006.Search in Google Scholar

[10] J. A. Baumann, Production of Energy Efficient Preform Structures (PEEPS), 2012. Available at: https://www.osti.gov/biblio/1042703.Search in Google Scholar

[11] Z. Tan, J. Li, and Z. Zhang, “Experimental and numerical studies on fabrication of nanoparticle reinforced aluminum matrix composites by friction stir additive manufacturing,” J. Mater. Res. Technol., vol. 12, pp. 1898–1912, 2021, https://doi.org/10.1016/j.jmrt.2021.04.004.Search in Google Scholar

[12] Y.-H. Ho, S. S. Joshi, T. C. Wu, C. M. Hung, N. J. Ho, and N. B. Dahotre, “In-vitro bio-corrosion behavior of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites,” Mater. Sci. Eng. C, vol. 109, no. 110632, 2020, https://doi.org/10.1016/j.msec.2020.110632.Search in Google Scholar PubMed

[13] A. Ahmad, S. Nourouzi, and H. J. Aval, “Effects of multipass additive friction stir processing on microstructure and mechanical properties of Al-Zn-cup/Al-Zn laminated composites,” J. Occup. Med., vol. 73, no. 10, pp. 2844–2858, 2021, https://doi.org/10.1007/s11837-021-04760-5.Search in Google Scholar

[14] M. Mondal, H. Das, S. T. Hong, B. S. Jeong, and H. N. Han, “Local enhancement of the material properties of aluminium sheets by a combination of additive manufacturing and friction stir processing,” CIRP Ann., vol. 68, no. 1, pp. 289–292, 2019, https://doi.org/10.1016/j.cirp.2019.04.109.Search in Google Scholar

[15] H. Derazkola, F. Aghajani, F. Khodabakhshi, and A. Simchi, “Evaluation of a polymer-steel laminated sheet composite structure produced by friction stir additive manufacturing (FSAM) technology,” Polym. Test., vol. 90, no. 106690, 2020, https://doi.org/10.1016/j.polymertesting.2020.106690.Search in Google Scholar

[16] A. Ahmad, S. Nourouzi, and H. J. Aval, “Fabrication of the laminated Al-Zn-Cup/Al-Zn composite using friction stir additive manufacturing,” Mater. Today Commun., vol. 27, no. 102268, 2021, https://doi.org/10.1016/j.mtcomm.2021.102268.Search in Google Scholar

[17] M. Srivastava and S. Rathee, “Microstructural and micro hardness study on fabrication of Al 5059/SiC composite component via a novel route of friction stir additive manufacturing,” Mater. Today: Proc., vol. 39, no. 1, pp. 1775–1780, 2020, https://doi.org/10.1016/j.matpr.2020.07.137.Search in Google Scholar

[18] M. Zubcak, J. Soltes, M. Zimina, T. Weinberger, and N. Enzinger, “Investigation of al-b4c metal matrix composites produced by friction stir additive processing,” Metals, vol. 11, no. 12, 2020, https://doi.org/10.3390/met11122020.Search in Google Scholar

[19] K. K. Jha, R. Kesharwani, and M. Imam, “Microstructural and micro-hardness study on the fabricated Al 5083-O/6061-T6/7075-T6 gradient composite component via a novel route of friction stir additive manufacturing,” Mater. Today: Proc., vol. 56, no. 1, 2022, pp. 819–825, https://doi.org/10.1016/j.matpr.2022.02.262.Search in Google Scholar

[20] D. Wu, W. Li, K. Liu, Y. Yang, and S. Hao, “Optimization of cold spray additive manufactured AA2024/Al2O3 metal matrix composite with heat treatment,” J. Mater. Sci. Technol., vol. 106, pp. 211–224, 2022, https://doi.org/10.1016/j.jmst.2021.07.036.Search in Google Scholar

[21] I. K. Lu and A. P. Reynolds, “Innovative friction stir additive manufacturing of cast 2050 Al-Cu-Li aluminum alloy,” Prog. Addit. Manuf., vol. 6, no. 3, pp. 471–477, 2021, https://doi.org/10.1007/s40964-021-00175-5.Search in Google Scholar

[22] Z. Zhang, Z. J. Tan, J. Y. Li, Y. F. Zu, W. W. Liu, and J. J. Sha, “Experimental and numerical studies of re-stirring and re-heating effects on mechanical properties in friction stir additive manufacturing,” Int. J. Adv. Des. Manuf. Technol., vol. 104, no. 1, pp. 767–784, 2019, https://doi.org/10.1007/s00170-019-03917-6.Search in Google Scholar

[23] Z. Zhao, X. Yang, S. Li, and D. Li, “Interfacial bonding features of friction stir additive manufactured build for 2195-T8 aluminum-lithium alloy,” J. Manuf. Process., vol. 38, pp. 396–410, 2019, https://doi.org/10.1016/j.jmapro.2019.01.042.Search in Google Scholar

[24] M. F. Naqibi, M. Elyasi, H. J. Aval, and M. J. Mirnia, “Theoretical and experimental studies on fabrication of two-layer aluminum− copper pipe by friction stir additive manufacturing,” Trans. Nonferrous Metals Soc. China, vol. 31, no. 12, pp. 3643–3658, 2021, https://doi.org/10.1016/S1003-6326(21)65754-0.Search in Google Scholar

[25] Md. R. Reza, R. Jamaati, and H. J. Aval, “Fabrication of a 2-layer laminated steel composite by friction stir additive manufacturing,” J. Manuf. Process., vol. 51, pp. 110–121, 2021, https://doi.org/10.1016/j.jmapro.2020.01.031.Search in Google Scholar

[26] Z. Shen, et al.., “Local microstructure evolution and mechanical performance of friction stir additive manufactured 2195 Al-Li alloy,” Mater. Charact., no. 111818, 2022, https://doi.org/10.1016/j.matchar.2022.111818.Search in Google Scholar

[27] N. Gotawala, N. K. Mishra, and A. Shrivastava, “Solid-state depositions of multilayer SS304 by friction stir metal deposition,” Mater. Lett., vol. 314, no. 131881, 2022, https://doi.org/10.1016/j.matlet.2022.131881.Search in Google Scholar

[28] G. G. Stubblefield, K. Fraser, B. J. Phillips, J. B. Jordon, and P. G. Allison, “A meshfree computational framework for the numerical simulation of the solid-state additive manufacturing process, additive friction stir-deposition (AFS-D),” Mater. Des., vol. 202, no. 109514, 2021, https://doi.org/10.1016/j.matdes.2021.109514.Search in Google Scholar

[29] K. Chou, M. Eff, C. D. Cox, C. Saukas, and J. Carroll, “Optical image and Vickers hardness dataset for repair of 1080 steel using additive friction stir deposition of Aermet 100,” Data Brief., vol. 41, 2022, Art. no. 107862, https://doi.org/10.1016/j.dib.2022.107862.Search in Google Scholar PubMed PubMed Central

[30] E. Farabi, S. Babaniaris, M. R. Barnett, and D. M. Fabijanic, “Microstructure and mechanical properties of Ti6Al4V alloys fabricated by additive friction stir deposition,” Addit. Manuf. Lett., vol. 2, no. 100034, 2022, https://doi.org/10.1016/j.addlet.2022.100034.Search in Google Scholar

[31] M. K. Mahto, A. Kumar, A. R. Raja, M. Vashista, and M. Z. K. Yusufzai, “Friction stir cladding of copper on aluminium substrate,” CIRP J. Manuf. Sci. Technol., vol. 36, pp. 23–34, 2022, https://doi.org/10.1016/j.cirpj.2021.10.004.Search in Google Scholar

[32] M. E. Perry, et al.., “Tracing plastic deformation path and concurrent grain refinement during additive friction stir deposition,” Materialia, vol. 18, no. 101159, 2021, https://doi.org/10.1016/j.mtla.2021.101159.Search in Google Scholar

[33] W. D. Hartley, et al.., “Solid-state cladding on thin automotive sheet metals enabled by additive friction stir deposition,” J. Mater. Process. Technol., vol. 291, no. 117045, 2021, https://doi.org/10.1016/j.jmatprotec.2021.117045.Search in Google Scholar

[34] B. J. Phillips, et al.., “Effect of parallel deposition path and interface material flow on resulting microstructure and tensile behavior of Al-Mg-Si alloy fabricated by additive friction stir deposition,” J. Mater. Process. Technol., vol. 295, no. 117169, 2021, https://doi.org/10.1016/j.jmatprotec.2021.117169.Search in Google Scholar

[35] R. J. Griffiths, et al.., “Solid-state additive manufacturing of aluminum and copper using additive friction stir deposition: process-microstructure linkages,” Materialia, vol. 15, no. 100967, 2021, https://doi.org/10.1016/j.mtla.2020.100967.Search in Google Scholar

[36] K. Anderson-Wedge, et al.., “Characterization of the fatigue behavior of additive friction stir-deposition AA2219,” Int. J. Fatig., vol. 142, no. 105951, 2021, https://doi.org/10.1016/j.ijfatigue.2020.105951.Search in Google Scholar

[37] P. Agrawal, et al.., “Processing-structure-property correlation in additive friction stir deposited Ti-6Al-4V alloy from recycled metal chips,” Addit. Manuf., vol. 47, no. 102259, 2021, https://doi.org/10.1016/j.addma.2021.102259.Search in Google Scholar

[38] K. S. Ali, V. Mohanavel, M. Ravichandran, S. Arungalai Vendan, T. Sathish, and A. Karthick, “Microstructure and Mechanical properties of friction stir welded SiC/TiB2 reinforced aluminum hybrid composites,” Silicon, vol. 14, no. 7, pp. 3571–3581, 2022, https://doi.org/10.1007/s12633-021-01114-3.Search in Google Scholar

[39] R. K. Bhushan and D. Sharma, “Optimization of friction stir welding parameters to maximize hardness of AA6082/Si3N4 and AA6082/SiC composites joints,” Silicon, vol. 14, no. 2, pp. 643–661, 2022, https://doi.org/10.1007/s12633-020-00894-4.Search in Google Scholar

[40] M. S. Rajawat, M. S., S. Pagrut, S. Dwivedi, R. Raj, and A. R. Dixit, “Microstructural characterization of Friction stir assisted laminated lap welding of AA6063 sheets,” Mater. Today: Proc., vol. 56, pp. 949–953, 2022, https://doi.org/10.1016/j.matpr.2022.02.633.Search in Google Scholar

[41] I. Chowdhury, K. Sengupta, K. K. Maji, S. Roy, and S. Ghosal, “Investigation of mechanical properties of dissimilar joint of Al6063 aluminium alloy and C26000 copper alloy by ultrasonic assisted friction stir welding,” Mater. Today: Proc., vol. 50, pp. 1527–1534, 2022, https://doi.org/10.1016/j.matpr.2021.09.103.Search in Google Scholar

[42] Y. Zhao, et al.., “Stationary shoulder friction stir welding of Al-Cu dissimilar materials and its mechanism for improving the microstructures and mechanical properties of joint,” Mater. Sci. Eng. A, vol. 837, 2022, Art. no. 142754, https://doi.org/10.1016/j.msea.2022.142754.Search in Google Scholar

[43] N. Raut, V. Yakkundi, V. Sunnapwar, T. Medhi, and V. K. S. Jain, “A specific analytical study of friction stir welded Ti-6Al-4V grade 5 alloy: stir zone microstructure and mechanical properties,” J. Manuf. Process., vol. 76, pp. 611–623, 2022, https://doi.org/10.1016/j.jmapro.2022.02.036.Search in Google Scholar

[44] H. Zhang, X. Liu, B. Zhang, and Y. Guo, “Enhancing the mechanical performances of friction stir lap welded Al-Zn-Mg-Cu alloy joint by promoting diffusion of alloying element Zn toward the pre-positioned Cu interlayer,” Mater. Sci. Eng. A, vol. 832, no. 142467, 2022, https://doi.org/10.1016/j.msea.2021.142467.Search in Google Scholar

[45] M. Toursangsaraki, Q. Li, Y. Hu, H. Wang, D. Zhao, and Y. Zhao, “Crystal plasticity modeling for mechanical property prediction of AA2195-T6 friction stir welded joints,” Mater. Sci. Eng. A, vol. 823, no. 141677, 2021, https://doi.org/10.1016/j.msea.2021.141677.Search in Google Scholar

[46] K. Praneetha, M. Apoorva, T. P. Laxmi, S. R. Sekhar, and S. S. Sashank, “Experimental investigation on aluminium alloy AA6082 and AA2014 using the friction stir welding,” Mater. Today: Proc., vol. 62, pp. 3397–3404, 2022, https://doi.org/10.1016/j.matpr.2022.04.270.Search in Google Scholar

[47] S. K. Maurya, R. Kumar, S. K. Mishra, A. Sharma, A. S. Yadav, and V. R. Kar, “Friction stir welding of cast aluminum alloy (A319): effect of process parameters,” Mater. Today: Proc., vol. 56, pp. 1024–1033, 2022, https://doi.org/10.1016/j.matpr.2022.03.271.Search in Google Scholar

[48] P. Yu, C. Wu, and L. Shi, “Analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates,” Acta Mater., vol. 207, no. 116692, 2021, https://doi.org/10.1016/j.actamat.2021.116692.Search in Google Scholar

[49] M. Abbasi, A. Abdollahzadeh, B. Bagheri, A. Ostovari Moghaddam, F. Sharifi, and M. Dadaei, “Study on the effect of the welding environment on the dynamic recrystallization phenomenon and residual stresses during the friction stir welding process of aluminum alloy,” Proc. Inst. Mech. Eng., Part L, vol. 235, no. 8, pp. 1809–1826, 2021, https://doi.org/10.1177/14644207211025113.Search in Google Scholar

[50] H. Deng, et al.., “Microstructure and mechanical properties of dissimilar NiTi/Ti6Al4V joints via back-heating assisted friction stir welding,” J. Manuf. Process., vol. 64, pp. 379–391, 2021, https://doi.org/10.1016/j.jmapro.2021.01.024.Search in Google Scholar

[51] A. Abdollahzadeh, B. Bagheri, M. Abbasi, F. Sharifi, S. E. Mirsalehi, and A. O. Moghaddam, “A modified version of friction stir welding process of aluminum alloys: analyzing the thermal treatment and wear behavior,” Proc. Inst. Mech. Eng., L, vol. 235, no. 10, pp. 2291–2309, 2021, https://doi.org/10.1177/14644207211023987.Search in Google Scholar

[52] P. Talebizadehsardari, F. Musharavati, A. Khan, T. A. Sebaey, A. Eyvaziana, and H. A. Derazkola, “Underwater friction stir welding of Al-Mg alloy: thermo-mechanical modeling and validation,” Mater. Today Commun., vol. 26, no. 101965, 2020, https://doi.org/10.1016/j.mtcomm.2020.101965.Search in Google Scholar

[53] To. Fatmagul, “Effect of tool rotational speed and position on mechanical and microstructural properties of friction stir welded dissimilar alloys AZ31B Mg and Al6061,” Mater. Test., vol. 64, no. 5, pp. 714–725, 2022, https://doi.org/10.1515/mt-2021-2080.Search in Google Scholar

[54] S. Çelik and F. Tolun, “Effect of double-sided friction stir welding on the mechanical and microstructural characteristics of AA5754 aluminium alloy,” Mater. Test., vol. 63, no. 9, pp. 829–835, 2021, https://doi.org/10.1515/mt-2021-0009.Search in Google Scholar

[55] M. Maurya, A. Maurya, and S. Kumar, “An overview of recent development and application of friction stir processing technique,” EVERGREEN Joint J. Novel Carbon Resour. Sci. Green Asia Strat., vol. 09, no. 03, pp. 814–829, 2022, https://doi.org/10.5109/4843113.Search in Google Scholar

[56] H. S. Arora, H. Singh, and B. K. Dhindaw, “Composite fabrication using friction stir processing-a review,” Int. J. Adv. Des. Manuf. Technol., vol. 61, no. 9, pp. 1043–1055, 2012, https://doi.org/10.1007/s00170-011-3758-8.Search in Google Scholar

[57] Z. Y. Ma, “Friction stir processing technology: a review,” Metall. Mater. Trans. A, vol. 39, no. 3, pp. 642–658, 2008, https://doi.org/10.1007/s11661-007-9459-0.Search in Google Scholar

[58] M. Maurya, S. Kumar, and N. K. Maurya, “Sudhir kumar, and nagendra kumar maurya, composites prepared via friction stir processing technique: a review,” Rev. Compos. Matériaux Avancés, vol. 30, no. 3–4, pp. 143–151, 2020, https://doi.org/10.18280/rcma.303-404.Search in Google Scholar

[59] V. Sharma, U. Prakash, and B. V. M. Kumar, “Surface composites by friction stir processing: a review,” J. Mater. Process. Technol., vol. 224, pp. 117–134, 2015, https://doi.org/10.1016/j.jmatprotec.2015.04.019.Search in Google Scholar

[60] A. K. Srivastava, et al.., “Experimental investigations of A359/Si3N4 surface composite produced by multi-pass friction stir processing,” Mater. Chem. Phys., vol. 257, no. 123717, 2020, https://doi.org/10.1016/j.matchemphys.2020.123717.Search in Google Scholar

[61] A. K. Srivastava, M. Maurya, A. Saxena, N. K. Maurya, S. P. Dwivedi, and A. R. Dixit, “Microstructural and fractographic analysis of A359/Si3N4 surface composite produced by friction stir processing,” Int. J. Mater. Res., vol. 112, no. 1, pp. 68–77, 2021, https://doi.org/10.1515/ijmr-2020-78277753.Search in Google Scholar

[62] S. Kumar, K. Kumar, and M. Maurya, “Parametric optimization of friction stir processing on micro-hardness of Al/B4C composite,” Int. J. Mater. Res., vol. 112, no. 11, pp. 898–909, 2021, https://doi.org/10.1515/ijmr-2020-8027.Search in Google Scholar

[63] S. P. Dwivedi, et al.., “Alumina catalyst waste utilization for aluminum-based composites using the friction stir process,” Mater. Test., vol. 64, no. 4, pp. 533–540, 2022, https://doi.org/10.1515/mt-2021-2074.Search in Google Scholar

[64] A. K. Srivastava, N. K. Maurya, M. Maurya, S. Prakash Dwivedi, and A. Saxena, “Effect of multiple passes on microstructural and mechanical properties of surface composite Al 2024/SiC produced by friction stir processing,” Ann. Chimie Sci. Matériaux, vol. 44, no. 6, pp. 421–426, 2020, https://doi.org/10.18280/acsm.440608.Search in Google Scholar

[65] Ke. Qiao, et al.., “Effect of multi-pass friction stir processing on the microstructure evolution and corrosion behavior of ZrO2/AZ31 magnesium matrix composite,” J. Mater. Res. Technol., vol. 18, pp. 1166–1179, 2022, https://doi.org/10.1016/j.jmrt.2022.02.127.Search in Google Scholar

[66] Y. Mazaheri, R. Malmir, M. Mahdi Jalilvand, M. Sheikhi, and A. Heidarpour, “Mechanical properties and tribological performance of A356/Cr3C2-NiCr surface composite developed by high-velocity oxy-fuel and post friction stir processing treatment,” Surface. Interfac., vol. 28, no. 101627, 2022, https://doi.org/10.1016/j.surfin.2021.101627.Search in Google Scholar

[67] V. Pragada, V. Soni, N. D. Ghetiya, and S. Bharti, “Influence of tool travel direction on microhardness and tribological properties of AA2014/SiC-CNT hybrid surface composites produced by multi-pass friction stir processing,” Mater. Today: Proc., vol. 56, pp. 150–156, 2022, https://doi.org/10.1016/j.matpr.2022.01.025.Search in Google Scholar

[68] F. Liu, A. Li, Z. Shen, H. Chen, and J. Yan, “Microstructure and corrosion behavior of Al-Ti-TiC-CNTs/AZ31 magnesium matrix composites prepared using laser cladding and high speed friction stir processing,” Opt Laser. Technol., vol. 152, 2022, Art. no. 108078, https://doi.org/10.1016/j.optlastec.2022.108078.Search in Google Scholar

[69] M. Orłowska, F. Pixner, A. Hütter, N. Enzinger, L. Olejnik, and M. Lewandowska, “Manufacturing of coarse and ultrafine-grained aluminum matrix composites reinforced with Al2O3 nanoparticles via friction stir processing,” J. Manuf. Process., vol. 80, no. 2022, pp. 359–373, 2022, https://doi.org/10.1016/j.jmapro.2022.06.011.,Search in Google Scholar

[70] D. Sang, X. Xin, R. Fu, and Y. Li, “Effect of deformation twinning on microstructure refinement of Fe-38Mn alloy during friction stir processing,” J. Alloys Compd., vol. 2022, 2022, Art. no. 166272, https://doi.org/10.1016/j.jallcom.2022.166272.Search in Google Scholar

[71] P. Han, et al.., “Modification of cold-sprayed high-entropy alloy particles reinforced aluminum matrix composites via friction stir processing,” J. Alloys Compd., vol. 907, no. 164426, 2022, https://doi.org/10.1016/j.jallcom.2022.164426.Search in Google Scholar

[72] S. V. Patel, V. P. Singh, D. Kumar, B. S. Roy, and B. Kuriachen, “Microstructural, mechanical and wear behavior of A7075 surface composite reinforced with WC nano particle through friction stir processing,” Mater. Sci. Eng. B, vol. 276, no. 115476, pp. 85–105, 2022, https://doi.org/10.1016/j.mseb.2021.115476.Search in Google Scholar

[73] S. K. Patel, V. P. Singh, B. S. Roy, and B. Kuriachen, “Microstructural, mechanical and wear behavior of A7075 surface composite reinforced with WC and ZrSiO4 nanoparticle through friction stir processing,” J. Manuf. Process., vol. 71, pp. 85–105, 2021, https://doi.org/10.1016/j.jmapro.2021.09.010.Search in Google Scholar

[74] S. Ayvaz, D. Arslan, and M. Ayvaz, “Investigation of mechanical and tribological behavior of SiC and B4C reinforced Al-Zn-Mg-Si-Cu alloy matrix surface composites fabricated via friction stir processing,” Mater. Today Commun., vol. 31, no. 103419, 2022, https://doi.org/10.1016/j.mtcomm.2022.103419.Search in Google Scholar

[75] A. Sharma, Arekh, S. Singh, and K. Pal, “Investigation of microstructural and mechanical properties of Al alloy 7075-T6/B4C nano composite concocted via friction stir process,” Ceram. Int., vol. 48, no. 23, pp. 35708–35718, 2022, https://doi.org/10.1016/j.ceramint.2022.06.212.Search in Google Scholar

[76] M. Stummer, Maximilian, and N. Enzinger, “Thermo-mechanical testing of TiO2 functional coatings using friction stir processing,” Mater. Test., vol. 60, no. 9, pp. 818–824, 2018, https://doi.org/10.3139/120.111218.Christopher WeibSearch in Google Scholar

[77] Y. Lu, Li, L. Wangxin, F. Fan, G. Hongfeng, and M. Y. Y. M. Qian, “Mechanical properties and corrosion behavior of a friction stir processed magnesium alloy composite AZ31B-SiC,” Mater. Test., vol. 64, no. 3, pp. 314–322, 2022, https://doi.org/10.1515/mt-2021-2063.Search in Google Scholar

[78] V. Pattusamy, Vijayavel, Ilamurugan, R., Govindaraj, M. and Kasi, A., Effect of tool diameter ratio on the microstructural characteristics of a solid-state processed aluminum based metal matrix composite, Mater. Test., vol. 63, no. 7, 2021, pp. 668-675, 2020, https://doi.org/10.1515/mt-2020-0108 Search in Google Scholar

[79] H. Kumar, R. Prasad, P. Kumar, S. P. Tewari, and J. K. Singh, “Mechanical and tribological characterization of industrial wastes reinforced aluminum alloy composites fabricated via friction stir processing,” J. Alloys Compd., vol. 831, no. 154832, 2020, https://doi.org/10.1016/j.jallcom.2020.154832.Search in Google Scholar

[80] H. Vinothkumar, S. Saravanakumar, C. Ramesh, P. Prakash, and S. Naveen, “Investigation on Al2024 with Si3N4 and AlN composites using friction stir processing,” Mater. Today: Proc., vol. 33, pp. 3089–3092, 2020, https://doi.org/10.1016/j.matpr.2020.03.683.Search in Google Scholar

[81] V. Msomi and S. Mabuwa, “Analysis of material positioning towards microstructure of the friction stir processed AA1050/AA6082 dissimilar joint,” Adv. Ind. Manuf. Eng., vol. 1, no. 100002, 2020, https://doi.org/10.1016/j.aime.2020.100002.Search in Google Scholar

[82] J. Mohamadigangaraj, S. Nourouzi, and H. J. Aval, “Statistical modelling and optimization of friction stir processing of A390-10 wt% SiC compo-cast composites,” Measurement, vol. 165, 2020, Art. no. 108166, https://doi.org/10.1016/j.measurement.2020.108166.Search in Google Scholar

[83] G. K. Padhy, C. S. Wu, and S. Gao, “Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: a review,” J. Mater. Sci. Technol., vol. 34, no. 1, pp. 1–38, 2018, https://doi.org/10.1016/j.jmst.2017.11.029.Search in Google Scholar

[84] S. Liu, et al.., “Friction surface cladding: an exploratory study of a new solid state cladding process,” J. Mater. Process. Technol., vol. 229, pp. 769–784, 2016, https://doi.org/10.1016/j.jmatprotec.2015.10.029.Search in Google Scholar

[85] K. Badheka and V. Badheka, “Friction surfacing of aluminium on steel: an experimental approach,” Mater. Today Proc., vol. 4, no. 9, pp. 9937–9941, 2017, https://doi.org/10.1016/j.matpr.2017.06.297.Search in Google Scholar

[86] M. K. Mahto, A. Kumar, A. Ravi Raja, M. Vashista, and M. Y. Zaheer Khan, “Friction stir cladding of copper on aluminium substrate,” CIRP J. Manuf. Sci. Technol., vol. 36, pp. 23–34, 2022, https://doi.org/10.1016/j.cirpj.2021.10.004.Search in Google Scholar

[87] Y. Zhen, J. Shen, S. Hu, C. Yin, F. Yin, and X. Bu, “Effect of rotation rate on microstructure and mechanical properties of CMT cladding layer of AZ91 magnesium alloy fabricated by friction stir processing,” J. Manuf. Process., vol. 79, pp. 553–561, 2022, https://doi.org/10.1016/j.jmapro.2022.05.017.Search in Google Scholar

[88] K. Gao, S. Basak, M. Mondal, S. Zhang, S.-T. Hong, S. Y. Boakye, and H.-H. Cho, “Friction stir welding of AA3003-clad AA6013 thin sheets: microstructural changes related to tensile properties and fatigue failure mechanism,” J. Mater. Res. Technol., vol. 17, pp. 3221–3233, 2022, https://doi.org/10.1016/j.jmrt.2022.02.073.Search in Google Scholar

[89] S. Basak, M. Mondal, K. Gao, S. Y. A. Sung-Tae Hong, and H.-H. Cho, “Friction stir butt-welding of roll cladded aluminum thin sheets: effect of microstructural and texture changes on mechanical properties,” Mater. Sci. Eng. A, vol. 832, no. 142490, 2022, https://doi.org/10.1016/j.msea.2021.142490.Search in Google Scholar

[90] Y. Zhen, J. Shen, S. Hu, Ji Bi, F. Yin, and X. Bu, “Effect of friction stir processing on microstructure and properties of AZ91 magnesium alloy CMT cladding layer,” Mater. Lett., vol. 282, no. 128701, 2021, https://doi.org/10.1016/j.matlet.2020.128701.Search in Google Scholar

[91] A. B. Ibrahim, F. A. Al-Badour, A. Y. Adesina, and N. Merah, “Akeem Yusuf Adesina, and Nesar Merah, Effect of process parameters on microstructural and mechanical properties of friction stir diffusion cladded ASTM A516-70 steel using 5052 Al alloy,” J. Manuf. Process., vol. 34, pp. 451–462, 2018, https://doi.org/10.1016/j.jmapro.2018.06.020.Search in Google Scholar

[92] A. Ardalanniya, S. Nourouzi, and H. J. Aval, “Fabrication of a laminated aluminium matrix composite using friction stir processing as a cladding method,” Mater. Sci. Eng. B, vol. 272, no. 115326, 2021, https://doi.org/10.1016/j.mseb.2021.115326.Search in Google Scholar

[93] G. Zhang, X. Yang, D. Zhu, and L. Zhang, “Cladding thick Al plate onto strong steel substrate using a novel process of multilayer-friction stir brazing (ML-FSB),” Mater. Des., vol. 185, no. 108232, 2020, https://doi.org/10.1016/j.matdes.2019.108232.Search in Google Scholar

[94] J. Liu, H. Yan, Z. Li, P. Zhang, Z. Yu, and Q. Lu, “Microstructure and properties of Ni-based self-lubricating coatings by laser cladding/friction stir processing,” Optik, vol. 241, no. 166143, 2021, https://doi.org/10.1016/j.ijleo.2020.166143.Search in Google Scholar

[95] Z. Rahmati, H. J. Aval, S. Nourouzi, and R. Jamaati, “Effect of friction surfacing parameters on microstructure and mechanical properties of solid-solutionized AA2024 aluminium alloy cladded on AA1050,” Mater. Chem. Phys., vol. 269, no. 124756, 2021, https://doi.org/10.1016/j.matchemphys.2021.124756.Search in Google Scholar

[96] Z. Rahmati, H. J. Aval, S. Nourouzi, and R. Jamaati, “Microstructural, tribological, and texture analysis of friction surfaced Al-Mg-Cu clad on AA1050 alloy,” Surf. Coat. Technol., vol. 397, no. 125980, 2020, https://doi.org/10.1016/j.surfcoat.2020.125980.Search in Google Scholar

[97] A. K. Lakshminarayanan and V. E. Annamalai, “Fabrication and performance evaluation of dissimilar magnesium-aluminium alloy multi-seam friction stir clad joints,” Trans. Nonferrous Metals Soc. China, vol. 27, no. 1, pp. 25–35, 2017, https://doi.org/10.1016/S1003-6326(17)60004-9.Search in Google Scholar

[98] V. D. Stelt, A. A., T. Cornelis Bor, J. M. HubertusGeijselaers, R. Akkerman, and H. Antoniusvan den Boogaard, “Cladding of advanced Al alloys employing friction stir welding Key engineering materials,” Trans Tech Publ., vol. 554, pp. 1014–1021, 2013, https://doi.org/10.4028/www.scientific.net/KEM.554-557.1014.Search in Google Scholar

[99] A. Jaferi, Z. Sadeghian, and B. Lotfi, “Application of friction stir processing (FSP) as a cladding method to produce AA2024-AA1050 multi-layer sheets,” Iran. J. Mater. Form., vol. 6, no. No. 2, pp. 20–29, 2019.Search in Google Scholar

[100] C. Shi, C. Liu, and K. Zhu, “Effect of friction stir processing on microstructures and mechanical properties of TIG cladding layer on AA7075,” Mater. Res. Express, vol. 8, no. 12, 2021, Art. no. 126508, https://doi.org/10.1088/2053-1591/ac3e95.Search in Google Scholar

[101] H. Z. Yu, et al.., Non-beam based metal additive manufacturing enabled by additive friction stir deposition, Scr. Mater., vol. 153, pp. 122–130, 2018, https://doi.org/10.1016/j.scriptamat.2018.03.025 Search in Google Scholar

Published Online: 2023-12-27
Published in Print: 2024-02-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. User independent tool for the analysis of data from tensile testing for database systems
  3. Evaluation of corrugated core configuration effects on low-velocity impact response in metallic sandwich panels
  4. Effect of total heat input on coaxiality of rotor shaft in laser cladding
  5. Determination of characteristic properties of Co3O4 loaded LaFe x Al12−x O19 hexaaluminates
  6. Investigation on quasi-static axial crushing of Al/PVC foam-filled Al6063-T5 tubes
  7. Experimental analysis of the effects of different production directions on the mechanical characteristics of ABS, PLA, and PETG materials produced by FDM
  8. Interfacial microstructure and mechanical properties of Si3N4/Invar joints using Ag–Cu–In–Ti with Cu foil as an interlayer
  9. Properties of chemically foamed polypropylene materials for application to automobile interior door panels
  10. Tribological and thermal characteristics of copper-free brake friction composites
  11. Dry tribological behaviour of microwave-assisted sintered AA2024 matrix hybrid composites reinforced by TiC/B4C/nano-graphite particles
  12. Erosion rate of AA6082-T6 aluminum alloy subjected to erosive wear determined by the meta-heuristic (SCA) based ANFIS method
  13. Mechanical properties of elevator ropes and belts exposed to corrosion and elevated temperatures
  14. Variants of friction stir based processes: review on process fundamentals, material attributes and mechanical properties
  15. Performance of conventional and wiper CBN inserts under various cooling conditions in hard turning of AISI 52100 steel
Downloaded on 25.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/mt-2023-0196/pdf
Scroll to top button