Home Energy efficiency in materials testing by reactive power – part 1: power recirculating method in wear testing
Article
Licensed
Unlicensed Requires Authentication

Energy efficiency in materials testing by reactive power – part 1: power recirculating method in wear testing

  • Dietmar Findeisen

    Prof. Dr.-Ing. habil.

    Dietmar Findeisen, born in 1935, studied Mechanical Engineering at TH Hannover and obtained his doctor degree in 1974. In 1984, he habilitated in the field of vibration machines. In 1989, he was appointed an apl. professorship at the TU Berlin. Until March 2000, he was head of the division “Scientific Instrumentation” at the Federal Institute for Materials Research and Testing (BAM) in Berlin. His research areas include systems theory and vibration engineering, complex power theory, and hydrostatic power transmission (oil hydraulics). From 1976 to 2002, he taught at the TU Berlin in “Elements of Vibration Control” and “Hydraulics and Pneumatics”. Dietmar Findeisen passed away in 2024.

    and Dirk Schröpfer

    Dr.-Ing.

    Dirk Schröpfer, born in 1981, studied materials engineering at TU Ilmenau and achieved his final qualification of Dipl.-Ing. in 2007. He subsequently worked as R&D-engineer at QSIL AG in Ilmenau and from 2012 as research assistant at Federal Institute for Materials Research and Testing (BAM). In 2017, he obtained his doctor degree in the field of integrity of welded joints. Since then, he worked as a postdoctoral researcher at BAM in the area of innovative manufacturing processes and component safety. In 2022, he became head of the division “Testing Devices and Equipment” at BAM.

    ORCID logo EMAIL logo
Published/Copyright: December 16, 2024
Become an author with De Gruyter Brill

Abstract

Reactive power is related to the type of power that does not consume energy but stores it. In the design of test machines, the utilization of this physical phenomenon would be very beneficial. Reactive power allows for the combination of power amplification with energy savings, making it an ideal principle for conducting long-term tests that involve high loads and prolonged energy consumption. This concept is illustrated in this work focusing test machines used in rotary testing procedures. Drive element pairs, which serve as component test objects, are primarily exposed to wear stress. These stressed element pairs are consequently integral parts of a tribological system. The underlying principles of power amplification and power feedback are explained from the perspectives of drive technology, systematic design, methodical design, and mechatronics.


Corresponding author: Dirk Schröpfer, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany, E-mail:
In memory of Dietmar Findeisen.

About the authors

Dietmar Findeisen

Prof. Dr.-Ing. habil.

Dietmar Findeisen, born in 1935, studied Mechanical Engineering at TH Hannover and obtained his doctor degree in 1974. In 1984, he habilitated in the field of vibration machines. In 1989, he was appointed an apl. professorship at the TU Berlin. Until March 2000, he was head of the division “Scientific Instrumentation” at the Federal Institute for Materials Research and Testing (BAM) in Berlin. His research areas include systems theory and vibration engineering, complex power theory, and hydrostatic power transmission (oil hydraulics). From 1976 to 2002, he taught at the TU Berlin in “Elements of Vibration Control” and “Hydraulics and Pneumatics”. Dietmar Findeisen passed away in 2024.

Dirk Schröpfer

Dr.-Ing.

Dirk Schröpfer, born in 1981, studied materials engineering at TU Ilmenau and achieved his final qualification of Dipl.-Ing. in 2007. He subsequently worked as R&D-engineer at QSIL AG in Ilmenau and from 2012 as research assistant at Federal Institute for Materials Research and Testing (BAM). In 2017, he obtained his doctor degree in the field of integrity of welded joints. Since then, he worked as a postdoctoral researcher at BAM in the area of innovative manufacturing processes and component safety. In 2022, he became head of the division “Testing Devices and Equipment” at BAM.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: DeepL to improve English language.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

[1] Technical Principles of mechanisms – Terminology of mechanisms, VDI 2127, 1993 [Online]. Available at: https://www.dinmedia.de/de/technische-regel/vdi-2127/954759.Search in Google Scholar

[2] G. Niemann and H. Winter, Maschinenelemente – Band 2: Getriebe allgemein, Zahnradgetriebe – Grundlagen, Stirnradgetriebe, Berlin, Germany, Springer, 2003.10.1007/978-3-662-11873-3_2Search in Google Scholar

[3] H. Czichos and K.-H. Habig, Tribologie-Handbuch – Tribometrie, Tribomaterialien, Tribotechnik, Berlin, Germany, Springer, 2020.10.1007/978-3-658-29484-7Search in Google Scholar

[4] H. Czichos, “Tribologie – 50 Jahre interdisziplinäre Reibungs- und Verschleißforschung,” Mater. Test., vol. 58, nos. 11–12, pp. 921–926, 2016, https://doi.org/10.3139/120.110943.Search in Google Scholar

[5] Gears – Wear and Damage to Gear Teeth – Part 1: Nomenclature and Characteristics, ISO 10825-1, May 2022 [Online]. Available at: https://www.dinmedia.de/de/norm/iso-10825-1/355735018.Search in Google Scholar

[6] G. Niemann and H. Rettig, “Der FZG-Zahnrad-Kurztest zur Prüfung von Getriebeölen,” Erdöl und Kohle, vol. 07, no. 10, pp. 640–642, 1954.Search in Google Scholar

[7] H. Winter, K. Michaelis, Fresstragfähigkeit von Stirnradgetrieben, Antriebstechnik, vol. 14, Part 1: no. 07, pp. 405 – 409 /Part 2: no. 08, pp. 461 – 465, 1975.Search in Google Scholar

[8] B.R. Höhn, P. Oster, K. Michaelis, Zahnfuß-betriebsfestigkeitsuntersuchungen an einsatzgehärteten zahnrädern, Antriebstechnik, vol. 40, Part 1: no. 08, pp. 37 – 39 /Part 2: no. 09, pp. 65 – 69, 2001.Search in Google Scholar

[9] A. Sitzmann, Th. Tobie, K. Stahl, and S. Schurer, “Influence of the case properties after nitriding on the load carrying capacity of highly loaded gears,”in ASME 2019 International Power Transmission and Gearing Conference, Proceedings, Anaheim, CA, USA, 2019, pp. 1–9.10.1115/DETC2019-97405Search in Google Scholar

[10] Gears – FZG Test Procedures – Part 1: FZG Test Method A/8,3/90 for Relative Scuffing Load-Carrying Capacity of Oils, 2006 ISO 14635-1 [Online]. Available at: https://www.din.de/de/mitwirken/normenausschuesse/nam/veroeffentlichungen/wdc-beuth:din21:87430709.Search in Google Scholar

[11] Planetary gear drives – definitions, symbols, designs, calculations, 2012 VDI 2157 [Online]. Available at: https://www.din.de/de/wdc-beuth:din21:138169923.Search in Google Scholar

[12] H. W. Müller, Die Umlaufgetriebe: Auslegung und vielseitige Anwendungen, Berlin, Germany, Springer, 1998.10.1007/978-3-642-58725-2Search in Google Scholar

[13] B. Bender, and K. Gericke, Eds., Pahl/Beitz Konstruktionslehre, 9th ed. Berlin, Germany, Springer, 2020.10.1007/978-3-662-57303-7Search in Google Scholar

[14] K. Roth and R. Simonek, “Mechanische verstärker,” Konstruktion, vol. 23, no. 3, pp. 90–98, 1971.Search in Google Scholar

[15] K. Roth, Konstruieren mit Konstruktionskatalogen – Band 2: Kataloge, Berlin, Germany, Springer, 2000.10.1007/978-3-642-17466-7Search in Google Scholar

[16] Design Methodology for Mechatronic Systems, VDI 2206, June 2004 [Online]. Available at: https://www.dinmedia.de/de/technische-regel/vdi-2206/73296956.Search in Google Scholar

[17] R. Isermann, Mechatronische Systeme – Grundlagen, 2nd ed., Berlin, Germany, Springer, 2007.Search in Google Scholar

[18] S. Rinderknecht, R. Nordmann, and H. Birkhofer, Einführung in die Mechatronik für den Maschinenbau, 2nd ed., Shaker, Ed., Aachen, Germany, 2018.Search in Google Scholar

[19] L. Zhihong, H. Ping, and S. Rinderknecht, “A combined theoretical and experimental Investigation of the overall energy consumption in a wet dual clutch system during a driving profile,”ASME 2021 International Mechanical Engineering Congress and Exposition, Proceedings, 2021, pp. 1–9. online.Search in Google Scholar

[20] Fluid Power Systems and Components – Graphic Symbols and Circuit Diagrams – Part 1: Graphic Symbols for Conventional use and Data-Processing Applications, ISO 1219-1, June 2016 [Online]. Available at: https://www.din.de/de/mitwirken/normenausschuesse/nam/veroeffentlichungen/wdc-beuth:din21:297840234.Search in Google Scholar

[21] K. V. Schaller, Betriebsfestigkeitsuntersuchungen zur Grübchenbildung an einsatzgehärteten Stirnflanken, Ph.D. dissertation, FZG – Department of Design Components, Technical University of Munich (TUM), Munich, Germany, 1990.Search in Google Scholar

[22] C. Eberspächer, Reihenfolgeeffekte bei der Grübchen-Betriebsfestigkeit einsatzgehärteter Zahnräder, Ph.D. dissertation, FZG – Department of Design Components, Technical University of Munich (TUM), Munich, Germany, 1995.Search in Google Scholar

[23] C. Lohmann, Zusammenhang von Ermüdung, Rissbildung, Verschleiß und Graufleckentragfähigkeit an Stirnrädern, Ph.D. dissertation, Chair of Industrial and Automotive Drivetrains (LIFA), Ruhr-University Bochum (RUB), Bochum, Germany, 2016.Search in Google Scholar

[24] A. Kretschmer, “Eine Leistungsprüfanlage für Triebelemente,” Mater. Test., vol. 01, no. 04, pp. 132–141, 1959, https://doi.org/10.1515/mt-1959-010402.Search in Google Scholar

[25] K.-H. Bußmann, H. Lösche, Winkelmessungen an gummi-keilriemen, Kautschuk und Gummi, vol. 11, Part 1: no. 10, pp. 238 – 242 /Part 2: no. 11, pp. 266 – 276, 1958.Search in Google Scholar

[26] P. Schrimmer and H. Lösche, “Treibriemen, Riementriebe und Treibriemenprüfung,” Klepzig Fachberichte, vol. 72, no. 01, pp. 4–12, 1964.Search in Google Scholar

[27] P. Schrimmer, “Profilverformung und Betriebsverhalten von Keilriemen,” Ph.D. dissertation, Department of mechanical and electrical engineering, Technical University Brunswick, Brunswick, Germany, 1971.Search in Google Scholar

[28] E. Jarchow, K. Langenbeck, H. Benthake, “Planeten- und Überlagerungsgetriebe,” Antriebstechnik, vol. 06, Part 1: no. 11, pp. 402 – 406 /Part 2: no. 12, pp. 432 – 440, 1967.Search in Google Scholar

[29] E. Jarchow, “Stufenlose hydrostatische Umlauf- und Koppelgetriebe,” VDI-Berichte, vol. 167, pp. 5–20, 1971.Search in Google Scholar

[30] D. Findeisen, “Gleichförmig übersetzende Getriebe stufenloser Übersetzungsänderung, Gegenüberstellung von mechanischer und fluidtechnischer Energieübertragung,” Part 2, Konstruktion, vol. 33, no. 01, pp. 15–24, 1981.Search in Google Scholar

[31] S. Helduser, Grundlagen elektrohydraulischer Antriebe und Steuerungen, Mainz, Germany, Vereinigte Fachverlage, 2013.Search in Google Scholar

[32] D. Findeisen and S. Helduser, Ölhydraulik – Handbuch der hydraulischen Antriebe und Steuerungen, 6th ed., Berlin, Germany, Springer, 2015.10.1007/978-3-642-54909-0Search in Google Scholar

[33] D. Findeisen, Durchführung des Prüfverfahrens Schwingfestigkeitsversuch – Anforderungen an die Schwingprüfmaschine aus systemtheoretischer Sicht, Teil 1 und 2, Mater. Test., vol. 17, no. 4, pp. 96–104, https://doi.org/10.1515/mt-1975-170204.Search in Google Scholar

Published Online: 2024-12-16
Published in Print: 2025-01-29

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. The effect of MWCNT concentration on the electrical resistance change characteristic of glass/fiber epoxy composites under low cycle fatigue loading
  3. Effect of TMAB and ZrC concentration on mechanical and morphological properties of Ni–B/ZrC composite electrodeposition
  4. Influence of pulse duration and frequency of laser surface texturing on the surface roughness and microstructure of CoCr28Mo alloy for biomedical applications
  5. Comparison of Ni-based SiC and B4C reinforcements on a TIG-coated AISI 1040 steel
  6. Fatigue life of friction stir spot welds between Z91 magnesium alloy and ENAW7075-T651 aluminum alloy
  7. Effect of wire feed speed and arc length on weld bead geometry in synergistic controlled pulsed MIG/MAG welding
  8. Structural and morphological behavior of Al-based hybrid composites reinforced by SiC and WS2 inorganic material
  9. Impact behavior of natural material-based sandwich composites
  10. Effects of different production methods and hybridization on mechanical characteristics of basalt, flax, and jute fiber-reinforced composites
  11. Effect of heat treatment on interface characteristics and mechanical properties of explosive welded Cu/Ti composites
  12. Enhanced mechanical properties of Sr-modified Al–Mg–Si alloy by thermo-mechanical treatment
  13. Mechanical properties of laser welded similar and dissimilar steel joints of TBF1050 and DP1000 steel sheets
  14. Mechanical behavior of composite pipe structures under compressive force and its prediction using different machine learning algorithms
  15. Advanced structural design of engineering components utilizing an artificial neural network and GNDO algorithm
  16. Energy efficiency in materials testing by reactive power – part 1: power recirculating method in wear testing
Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/mt-2023-0136/html
Scroll to top button