Home Development and application of load profiles for thermal qualification testing of receptacle automotive connectors
Article
Licensed
Unlicensed Requires Authentication

Development and application of load profiles for thermal qualification testing of receptacle automotive connectors

  • Matthias Friedlein

    MSc Matthias Friedlein, born in 1990, studied mechanical engineering at Friedrich-Alexander-University Erlangen-Nuremberg (FAU) and has worked as a research assistant since 2017 at the Institute of Factory Automation and Production Systems (FAPS).

    EMAIL logo
    , Daniel Gräf

    MSc Daniel Gräf, born in 1991, studied industrial engineering at Friedrich-Alexander-University Erlangen-Nuremberg (FAU) and worked as a research assistant at the Institute FAPS between 2016 and 2020.

    , Jonas Stegner

    MSc Jonas Stegner, born in 1992, studied industrial engineering at Friedrich-Alexander-University Erlangen-Nuremberg (FAU).

    and Jörg Franke

    Prof. Dr.-Ing. Jörg Franke, born in 1964, has been head of the Institute for Factory Automation and Production Systems (FAPS) at Friedrich-Alexander University Erlangen-Nuremberg (FAU) since 2009.

Published/Copyright: March 31, 2021
Become an author with De Gruyter Brill

Abstract

Receptacle contacts often are a weak spot of the reliability in electronic systems. During the application phase of the lifecycle, especially in the automotive wiring harness, connectors experience severe loads such as temperature changes. During qualification testing, accelerated tests simulate these thermal stresses. Yet, only the damage mechanisms relevant for service life must be triggered. However, the increasing complexity of electronic components and wiring harnesses demands a continuous adaptation of test strategies. Therefore, this study develops and applies application-oriented load profiles for thermal qualification testing of connectors. Experiments include load profiles inspired by seasonal changes and daily car usage. The tests are carried out on a relative movement test bench as well as in a thermal cycling testing chamber. Contact resistance progression curves, the surface roughness of the contacts, and the area of the stressed contact zones assist in evaluating the effectiveness of the load profiles. All contacts tested during relative movement experiments show no change in contact resistance. The thermal cycling load profile however results in a significant rise in contact resistance. Additionally, the roughness values show varying damages on the contacts due to the different load profiles.


Institute of Factory Automation and Production Systems Universität Erlangen-Nürnberg Fürther-Str. 246b 90429 Nürnberg

About the authors

Matthias Friedlein

MSc Matthias Friedlein, born in 1990, studied mechanical engineering at Friedrich-Alexander-University Erlangen-Nuremberg (FAU) and has worked as a research assistant since 2017 at the Institute of Factory Automation and Production Systems (FAPS).

Daniel Gräf

MSc Daniel Gräf, born in 1991, studied industrial engineering at Friedrich-Alexander-University Erlangen-Nuremberg (FAU) and worked as a research assistant at the Institute FAPS between 2016 and 2020.

Jonas Stegner

MSc Jonas Stegner, born in 1992, studied industrial engineering at Friedrich-Alexander-University Erlangen-Nuremberg (FAU).

Prof. Dr.-Ing. Jörg Franke

Prof. Dr.-Ing. Jörg Franke, born in 1964, has been head of the Institute for Factory Automation and Production Systems (FAPS) at Friedrich-Alexander University Erlangen-Nuremberg (FAU) since 2009.

Acknowledgment

The Bavarian program for the “Investment for growth and jobs” objective, financed by the European Regional Development Fund (ERDF), funded this research in the E|Connect-Project.

References

1 V. Kaiser: Die Welt der Steckverbinder – Technologien und Trends (The World of connectors – technologies and trends), ZVEI – Zentralverband Elektrotechnik und Elektronikindustrie e.V., Frankfurt am Main, Germany (2015) (in German)Search in Google Scholar

2 V. Behrens: Elektrische Kontakte: Werkstoffe, Gestaltungen und Anwendungen in der Nach-richten-, Automobil- und Energietechnik (Electrical contacts: Materials, designs, and applications in communications, automotive, and power engineering), 3rd Ed., Expert, Renningen, Germany (2010) (in German)Search in Google Scholar

3 S. Weingärtner, M. Breitenberger, J. Stöcker: Der Einfluss von Reibkorrosion auf das Betriebsfestigkeitsverhalten im Rad-Nabe-Verbund von Nutzfahrzeugen (The influence of fretting corrosion on the fatigue life of wheel-hub assemblies of commercial vehicles), Materials Testing 52 (2010), No. 7-8, pp. 476-480 DOI:10.3139/120.110159 (in German)10.3139/120.110159Search in Google Scholar

4 T. Kimpel, U. Jauernig, R. Becker, R. Wagener, H. Kaufmann, and C. M. Sonsino: Betriebsfeste Bemessung von Steckverbindern in Steuergeräten (Design and dimensioning of pressfit connections in control modules), Materials Testing 55 (2013), No. 7-8, pp. 561-568 DOI:10.3139/120.110473 (in German)10.3139/120.110473Search in Google Scholar

5 E. Vinaricky, Ed.: Elektrische Kontakte, Werk-stoffe und Anwendungen (Electrical contacts, materials and applications), 3rd Ed., Springer Vieweg, Berlin, Heidelberg, Germany (2016) (in German)Search in Google Scholar

6 J. Swingler: The automotive connector: The influence of powering and lubricating a fretting contact interface, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 214 (2000), No. 6, pp. 615-623 DOI:10.1243/0954407001527484#10.1243/0954407001527484#Search in Google Scholar

7 D. Gagnon and M. Braunovic: Fretting in copper-to-copper contacts under AC and DC current conditions, Proceedings of the Forty-Sixth IEEE Holm Conference on Electrical Contacts, IEEE, Chicago, IL, USA (2000), pp. 247-253 DOI:10.1109/HOLM.2000.88993810.1109/HOLM.2000.889938Search in Google Scholar

8 T. S. N. S. Narayanan, Y. W. Park, K. Y. Lee: Fretting-corrosion mapping of tin-plated copper alloy contacts, Wear 262 (2007), No. 1-2, pp. 228-233 DOI:10.1016/j.wear.2006.05.015#10.1016/j.wear.2006.05.015#Search in Google Scholar

9 H. Endres: Praxishandbuch Steckverbinder (Practical Handbook on Connectors), 1st Ed., Vogel Business Media, Würzburg, Germany (2018) (in German)Search in Google Scholar

10 M. Braunovic: Fretting damage in tin-plated aluminum and copper connectors, IEEE Trans. Comp., Hybrids, Manufacturing Technology 12 (1989), No. 2, pp. 215-223 DOI:10.1109/33.31426.10.1109/33.31426Search in Google Scholar

11 M. Braunovic: Fretting in electrical/electronic connections: A review, IEICE Transactions on Electronics 92-C (2009), No. 8, pp. 982-991 DOI:10.1587/transele.E92.C.982#10.1587/transele.E92.C.982#Search in Google Scholar

12 M. Antler: Electrical effects of fretting connector contact materials: A review, Wear 106 (1985), No. 1-3, pp. 5-33 DOI:10.1016/0043-1648(85)90101-2#10.1016/0043-1648(85)90101-2#Search in Google Scholar

13 M. Antler, M. H. Drozdowicz: Fretting corrosion of gold-plated connector contacts, Wear 74 (1981), No. 1, pp. 27-50 DOI:10.1016/0043-1648(81)90192-7#10.1016/0043-1648(81)90192-7#Search in Google Scholar

14 H. W. Hermance, T. F. Egan: Organic deposits on precious metal contacts, Bell System Technical Journal 37 (1958), No. 3, pp. 739-776 DOI:10.1002/j.1538-7305.1958.tb03885.x10.1002/j.1538-7305.1958.tb03885.xSearch in Google Scholar

15 J. Laporte, S. Fouvry, O. Alquier: Prediction of electrical contact resistance failure of Ag/Ag plated contact subjected to complex fretting-reciprocating sliding, Wear 376-377 (2017), Part A, pp. 656-669 DOI:10.1016/j.wear.2016.12.033#10.1016/j.wear.2016.12.033#Search in Google Scholar

16 M. Antler: Fretting of electrical contacts: An investigation of palladium mated to other materials, Wear 81 (1982), No. 1, pp. 159-173 DOI:10.1016/0043-1648(82)90312-X#10.1016/0043-1648(82)90312-X#Search in Google Scholar

17 Y. W. Park, T. S. N. Sankara Narayanan, K. Y. Lee: Fretting corrosion of tin-plated contacts, Tribology International 41 (2008), No. 7, pp. 616-628 DOI:10.1016/j.triboint.2007.02.002#10.1016/j.triboint.2007.02.002#Search in Google Scholar

18 J. Neijzen, J. Glashorster: Fretting corrosion of tin-coated electrical contacts, IEEE Transactions on Components, Hybrids, Manufacturing Technologies 10 (1987), No. 1, pp. 68-74 DOI:10.1109/TCHMT.1987.113470710.1109/TCHMT.1987.1134707Search in Google Scholar

19 M. Braunovic: Effect of contact load on the contact resistance behaviour of different conductor and contact materials under fretting conditions, Proceedings of 19th International Conference on Electrical Contacts, Nuremberg, Germany (1998), pp. 283-287Search in Google Scholar

20 H. Yuan, J. Song, V. Schinow: Fretting corrosion of tin coated electrical contacts: The influence of normal force, coating thickness and geometry of sample configuration, Proceedings of the Sixty-second IEEE Holm Conference on Electrical Contacts, Clearwater Beach, Florida, USA (2016), pp. 33-38 DOI:10.1109/HOLM.2016.778000310.1109/HOLM.2016.7780003Search in Google Scholar

21 J. Schautzgy, Y. Ivanov, B. Kröger, J. Wilde: Durability studies on vibration-loaded electrical contact systems subjected to tribological stress, Materials Testing 61 (2019), No. 2, pp. 105-110 DOI:10.3139/120.11129010.3139/120.111290Search in Google Scholar

22 T. Song, X. Jiang, J. Jiang, D. Zhu: Effect of contact pressure on multiaxial fretting fatigue behavior of Al-Zn-Mg alloy, Materials Testing 59 (2017), No. 9, pp. 721-727 DOI:10.3139/120.11106210.3139/120.111062Search in Google Scholar

23 W. Neher: Zuverlässigkeitsbetrachtungen an Aufbau- und Verbindungstechnologien für elektronische Steuergeräte im Kraftfahrzeug unter Hochtemperaturbeanspruchungen (Reliability studies of packaging and interconnection technologies for electronic control units in motor vehicles under high-temperature loads), 1st Ed., Detert, Templin, Germany (2006) (in German)Search in Google Scholar

24 G. Knobloch: Steckverbinder II: Theorie der Kontakte, neue Technologien, Produkte und Management-Konzepte (Connectors II: Theory of contacts, new technologies, products and management concepts), 4th Ed., Expert, Renningen, Germany (2015) (in German)Search in Google Scholar

25 VW 80000: Elektrische und elektronische Komponenten in Kraftfahrzeugen bis 3,5 t LV 124 – Allgemeine Anforderungen, Prüfbedingungen und Prüfungen (Electrical and Electronic Components in Vehicles up to 3.5 t LV 124 – General Requirements, Test Conditions and Tests), Volkswagen AG, Wolfsburg, Germany (2013) (in German)Search in Google Scholar

26 R. van Basshuysen, F. Schäfer: Handbuch Verbrennungsmotor: Grundlagen, Komponenten, Systeme, Perspektiven (Combustion engine handbook: Fundamentals, components, systems, perspectives), 8th Ed., Springer Vieweg, Berlin, Heidelberg, Germany (2017) (in German)Search in Google Scholar

27 DC-10612 Rev-A: Prüfungsauswahlverfahren für E/E-Komponenten (E/E component test selection process), DaimlerChrysler, Stuttgart, Germany (2003) (in German)Search in Google Scholar

28 K. D. Van, A. Bignonnet: A unified model of fatigue, Materials Testing 50 (2008), No. 5, pp. 286-293 DOI:10.3139/120.10087510.3139/120.100875Search in Google Scholar

29 C. M. Sonsino: Ausgewählte Einflussgrößen auf die Betriebsfestigkeit (Selected parameters influencing fatigue strength), Materials Testing 52 (2010), No. 7-8, pp. 428-439 DOI:10.3139/120.110145 (in German)10.3139/120.110145Search in Google Scholar

30 DC-10611 Rev-A: Umweltprüfanforderungen für E/E-Komponenten (Environmental testing requirements for E/E components), Daimler-Chrysler, Stuttgart, Germany (2003) (in German)Search in Google Scholar

31 N. N.: Mobilität in Deutschland − MiD: Ergebnisbericht (Mobility in Germany – MiD: Final report), infas Institut für angewandte Sozial-wissenschaft GmbH, Bonn, Germany (2019) (in German)Search in Google Scholar

32 G. Pasaoglu, D. Fiorello, A. Martino, G. Scarcella, A. Alemanno, A. Zubaryeva, C. Thiel: Driving and parking patterns of European car drivers: A mobility survey, Publications Office of the European Union, Luxembourg (2012)Search in Google Scholar

33 IEC 60068-2-14 : 2009: Environmental conditions – Part 2 – 14: Test methods – Test N: Thermal cycling, Beuth, Berlin, Germany (2010)Search in Google Scholar

34 M. Friedlein, M. Spahr, R. Sues-Wolf, J. Franke: Failure dependent progression of contact resistance in thermal-shock testing of spring-clip contacts, IEEE Holm Conference on Electrical Contacts, Denver, CO, USA (2017), pp. 169-174 DOI:10.1109/HOLM.2017.808808110.1109/HOLM.2017.8088081Search in Google Scholar

35 M. Friedlein, D. Graf, F. Raiser, A. Jaumann, J. Franke. Occurrence and influence of fretting corrosion on receptacle contact resistance, IEEE Holm Conference on Electrical Contacts, Albuquerque, NM, USA (2018), pp. 295-301 DOI:10.1109/HOLM.2018.861166910.1109/HOLM.2018.8611669Search in Google Scholar

36 https://www.te.com/deu-de/product-928820-2.html?q=928820&source=hea-der accessed December 12, 2020Search in Google Scholar

37 https://www.te.com/deu-de/product-963754-1.html?q=963754&source=hea-der#pdp-docs-features# accessed December 12, 2020Search in Google Scholar

38 VW 75174: Prüfvorschrift Kfz-Steckverbinder LV 214 () Volkswagen AG, Wolfsburg, Germany (2018) (in German)Search in Google Scholar

Published Online: 2021-03-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Corrosion testing
  3. Effects of mixed acid solution on bromide epoxy vinyl ester and its glass fiber reinforced composites
  4. Stress corrosion and mechanical properties of zinc coating on 304 stainless steel
  5. Mechanical testing
  6. Eliminating plasticity effects in the measurement of residual stress by using the hole-drilling method
  7. Fatigue testing
  8. Effect of the galvanization process on the fatigue life of high strength steel compression springs
  9. Materials testing for welding and additive manufacturing applications
  10. Wear behavior and microstructure of Fe-C-Si-Cr-B-Ni hardfacing alloys
  11. Analysis of physical and chemical properties
  12. Structural hydroxyl distribution in jadeite grains and the diagenesis mechanism of jadeitite in Myanmar, Guatemala and Russia
  13. Production-oriented testing
  14. Comparison of processing parameter effects during magnetron sputtering and electrochemical anodization of TiO2 nanotubes on ITO/glass and glass substrates
  15. Mechanical Testing
  16. Effect of hydrothermal aging on the mechanical properties of nanocomposite pipes
  17. Wear Testing
  18. Investigation of the friction behavior of plasma spray Mo/NiCrBSi coated brake discs
  19. Component-Oriented Testing and Simulation
  20. Comparative investigation of the moth-flame algorithm and whale optimization algorithm for optimal spur gear design
  21. Fatigue Testing
  22. Development and application of load profiles for thermal qualification testing of receptacle automotive connectors
  23. Analysis of physical and chemical properties
  24. Structural and optical properties of pure ZnO and Al/Cu co-doped ZnO semiconductor thin films and electrical characterization of photodiodes
  25. Mechanical testing/Chemical resistance testing
  26. Effect of using different chemically modified breadfruit peel fiber in the reinforcement of LDPE composite
  27. Component-oriented testing and simulation
  28. Hybrid spotted hyena–Nelder-Mead optimization algorithm for selection of optimal machining parameters in grinding operations
Downloaded on 26.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/mt-2020-0040/html?lang=en
Scroll to top button