Home Dislocation mechanisms of mean stress effect on cyclic plasticity
Article
Licensed
Unlicensed Requires Authentication

Dislocation mechanisms of mean stress effect on cyclic plasticity

Systematic cyclic loading tests with two model materials help to understand the dislocation mechanisms
  • Hai Ni

    Dr. Ni obtained his Ph. D. in 2001 from the University of Toronto. He received his first degree (B. Eng) and Master of Eng. from An-Shan Institute of Iron and Steel, China. He is now a research associate in the Department of Materials Science and Engineering at Yale University.

    and Zhirui Wang

    Professor Zhirui Wang obtained his Bachelor of Engineering from Jiao-Tong University, China and acquired a Master of Science and a Ph. D., both in physical metallurgy, from the Polytechnic University of New York. He is now a professor in the Department of Materials Science and Engineering at the University of Toronto. He is recognized as an internationally well-known scientist in the field of Mechanical engineering, especially in the areas of structure-property relationships of materials, such as deformation, fracture, and failure analysis of a variety of engineering materials. He has published more than 140 papers, and has been invited to give plenary or keynote lectures at numerous international conferences/symposia. He also has a number of patents. Professor Wang is the editor and/or international advisory board member of several international technical journals. To date, there have been more than 30 people who obtained master’s and Ph.D’s degrees under his supervision.

Published/Copyright: March 5, 2022
Become an author with De Gruyter Brill

Abstract

The dislocation mechanisms behind sagging behavior of autosuspension spring steels are far from being understood due to their complicated microstructures. In this study, systematic cyclic loading tests were carried out on two model materials - industrial pure iron and spheroidized 1045 steel – to understand the mechanisms behind sagging. It is found that it is the different dislocation microstructures that control the cyclic creep behavior of different materials. With iron samples with low mean stress values, higher mean stresses do not trigger cell structure formation mainly due to the little requirement for high plastic strain amplitude and hence the lack of necessity for high dislocation density, and a large number of dislocation interactions through large mobile dislocations. In the case of the 1045 steel samples, the collapse of pre-existent substructures and the movement of newly generated mobile dislocations are the main reasons for the cyclic softening observed. The massive reorganization process of dislocation configurations and the competition between softening and hardening both carry on throughout the entire cycling process, but the softening process is found to be the predominant factor.

Summary

Die Versetzungsmechanismen, die sich hinter dem Fließverhalten von Federstählen verbergen, werden heute auf Grund der komplizierten Mikrostrukturen bei weitem noch nicht verstanden. In der vorliegenden Studie wurden daher systematische Tests mit zyklischer Beanspruchung mit zwei Modellwerkstoffen durchgeführt, mit Reineisen und mit dem Stahl 1045. Dabei hat sich herausgestellt, dass die verschiedenen Versetzungsstrukturen das zyklische Kriechverhalten verschiedener Werkstoffe beeinflussen. In den Eisenproben mit niedrigen Hauptspannungswerten, steuern höhere Hauptspannungen die zellulare Struktur nicht, überwiegend auf Grund einer niedrigen erforderlichen Dehnungsamplitude und somit der nicht bestehenden Notwendigkeit für eine hohe Versetzungsdichte, sowie einer großen Zahl von Versetzungswechselwirkungen infolge großer beweglicher Versetzungen. Im Fall der Proben des Stahls 1045 stellten sich der Zusammenbruch bereits existierender Unterstrukturen und die Bewegung neu generierter beweglicher Versetzungen als Hauptursachen für die zyklische Entfestigung heraus. Der massive Prozess der Umorganisation von Versetzungsanordnungen und die Wettbewerbswirkung zwischen Ver- und Entfestigung halten während des gesamten zyklischen Vorganges an, wobei sich jedoch der Entfestigungsprozess als dominanter Faktor herausstellte.

About the authors

Dr. Hai Ni

Dr. Ni obtained his Ph. D. in 2001 from the University of Toronto. He received his first degree (B. Eng) and Master of Eng. from An-Shan Institute of Iron and Steel, China. He is now a research associate in the Department of Materials Science and Engineering at Yale University.

Professor Zhirui Wang

Professor Zhirui Wang obtained his Bachelor of Engineering from Jiao-Tong University, China and acquired a Master of Science and a Ph. D., both in physical metallurgy, from the Polytechnic University of New York. He is now a professor in the Department of Materials Science and Engineering at the University of Toronto. He is recognized as an internationally well-known scientist in the field of Mechanical engineering, especially in the areas of structure-property relationships of materials, such as deformation, fracture, and failure analysis of a variety of engineering materials. He has published more than 140 papers, and has been invited to give plenary or keynote lectures at numerous international conferences/symposia. He also has a number of patents. Professor Wang is the editor and/or international advisory board member of several international technical journals. To date, there have been more than 30 people who obtained master’s and Ph.D’s degrees under his supervision.

Acknowledgement

The authors are grateful for the financial support of NSERC (Natural Science and Engineering Research Council of Canada) for this project, and for the donation of industrial pure iron material from ISPAT Inland Steel Ltd, USA. The financial support of the University of Toronto Graduate Open Fellowship is also highly appreciated by Mr. H. Ni.

References

1 Yang, Z. A.; Wang, Z.: Mater. Sci. Eng., A210 (1996), p. 8310.1016/0921-5093(95)10074-1Search in Google Scholar

2 Fatigue Failures, a lesson from principles of fatigue analysis, Revised by Donald j. WulpiSearch in Google Scholar

3 Dowing, Norman E.: Mechanical Behavior of Materials-Engineering Methods for Deformation, Fracture, and Fatigue, Prentice-Hall, Inc. 1993Search in Google Scholar

4 Yang, Z. A.; Wang, Z.: 37th MWSP Conf. Proc., ISS, Vol. XXXIII, 1996, pp. 355Search in Google Scholar

5 Yang, Z. A.; Wang, Z.: Cyclic Creep and Cyclic Deformation of High-Strength Spring Steels and the Evaluation of Sag Effect (internal report), University of Toronto, 1999Search in Google Scholar

6 Yang, Z. A.; Wang, Z.: Fatigue’99, Vol. 4, P.R. China, p. 2093Search in Google Scholar

7 Yang, Z. A.; Wang, Z.: Metall. Trans., Vol. 24A, 1993, pp. 208310.1007/BF02666342Search in Google Scholar

8 Kliman, V.; Bílŷ, M.: Mater. Sci. Eng., Vol. 44, 1980, pp. 7310.1016/0025-5416(80)90232-3Search in Google Scholar

9 Lorenzo, F.; Laird, C.: Mater. Sci. Eng., Vol. 62, 1984, p. 20510.1016/0025-5416(84)90223-4Search in Google Scholar

10 Eckert, R.; Laird, C.: Mater. Sci. Eng., Vol. 91, 1987, p. 8110.1016/0025-5416(87)90285-0Search in Google Scholar

11 Lukáš, P.; Kunz, L.: Int. J. Fatigue, Vol. 11, No. 1, 1989, p. 5510.1016/0142-1123(89)90048-0Search in Google Scholar

12 Wehner, T.; Fatemi, A.: Int. J. Fatigue, Vol. 13, No. 3, 1991, p. 24110.1016/0142-1123(91)90248-WSearch in Google Scholar

13 Pisarenko, G. S.; Troshchenko, V. T.; Strizhalo, V. A.; Zinchenko, A. I.: Fatigue of Eng. Mater. and Struct., Vol. 3, No. 4, 1980, p. 30510.1111/j.1460-2695.1980.tb01380.xSearch in Google Scholar

14 Koh, S. K.; Stephens, R. I.: Fatigue Fract. Engng Mater. Struct,. Vol. 14, No. 4, 1991, p. 41310.1111/j.1460-2695.1991.tb00672.xSearch in Google Scholar

15 Turner, A. P. L.; Martin, T. J. : Matall. Trans., Vol. 11A, 1980, p. 47510.1007/BF02654571Search in Google Scholar

16 Pokluda, J.; Staněk, P.: Kovove Mater, Vol. 16, 1978, p. 583Search in Google Scholar

17 Manson, S. S.; Halford, G. R.: Int. J. Fract., Vol. 17, 1981, p. 16910.1007/BF00053519Search in Google Scholar

18 Figueroa, J. C.; Bhat, S. P.; Laird, C.: Acta. Metall., Vol. 29, 1981, p. 166710.1016/0001-6160(81)90001-8Search in Google Scholar

19 Lorenzo, F.; Laird, C.: Acta. Metall., Vol. 32, 1984, p. 67110.1016/0001-6160(84)90141-XSearch in Google Scholar

20 Ni, H.; Wang, Z.: Mater. Sci. Eng., A314, 2001, p. 1210.1016/S0921-5093(00)01935-3Search in Google Scholar

21 Lukáš, P.; Klesnil, M.; Ryš, P.: Z. Metallkde, 56(1965), p. 10910.1515/ijmr-1965-560209Search in Google Scholar

21 Lukáš, P.; Klesnil, M.; Czech. J.: Phys. B15 (1964) 60010.1007/BF01688604Search in Google Scholar

22 Lawrence, F. V.; Russel, J. R.; Jones, C.: Met. Trans., 1970, Vol. 1, p. 36710.1007/BF02811544Search in Google Scholar

23 Abdel-Raouf, H.; Benham, P. P.; Plumtree, A.: Canad. Metal. Quart., 1971, Vol. 10, p. 8710.1179/cmq.1971.10.2.87Search in Google Scholar

24 Abdel-Raouf, H.; Plumtree, A.: Met. Trans., 1971, Vol. 2, p. 125110.1007/BF02664261Search in Google Scholar

25 Mughrabi, H.; Ackermann, F.; Herz, K.: ASTM-STP 675, 1979, p. 6910.1520/STP35885SSearch in Google Scholar

26 Wachob, H. F.; Johnson, H. H.: Met. Trans., 1979, Vol. 10A, p. 30510.1007/BF02658338Search in Google Scholar

27 Mughrabi, H.; Herz, K.; Stark, X.: Int. Journ. of Fracture, 17(1981), p. 19310.1007/BF00053520Search in Google Scholar

28 Abdel-Raouf, H.; Plumtree, A.: Met. Trans., 1971, Vol. 2, pp. 186310.1007/BF02913417Search in Google Scholar

29 Klesnil, M.; Lukáš, P.: Fatigue of Metallic Materials, Materials Science Monographs, Second revised edition, 1992Search in Google Scholar

30 Keh, A. S.; Weissmann, S.: Deformation Structures in Body-Centered Cubic Metals, Electron Microscopy and Strebgth of Crystals, G. Thomas and J. Washborn, eds., Intersciencs Publishers, New York, 1963, p. 231Search in Google Scholar

31 Laird, C.; Wang, Z.; Ma, B. T.; Chai, H. F.: Mater. Sci. Eng., A113, 1989, p. 24510.1016/0921-5093(89)90313-4Search in Google Scholar

32 Kuhlmann-Wilsdorf, D.; Laird, C.: Mater. Sci. Eng., Vol 37, 1979, p. 11110.1016/0025-5416(79)90074-0Search in Google Scholar

33 Hasegawa, T.; Kocks, U. F.: Acta Meta., Vol. 27, 1979, p. 170510.1016/0001-6160(79)90085-3Search in Google Scholar

34 Whelan, M. J.; Hirsch, P. B.: The Physics of Metals, Ed., Vol. 2, Cambridge University Press, 1975, p. 98Search in Google Scholar

35 Mughrabi, H.: Phil. Mag., Vol. 23, 1971, p. 89710.1080/14786437108216995Search in Google Scholar

Published Online: 2022-03-05
Published in Print: 2004-07-01

© 2004 Carl Hanser Verlag, München

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/mt-2004-0363/html?lang=en
Scroll to top button