Startseite Mathematik Existence and Uniqueness of Solutions for Fractional Dynamic Equations with Impulse Effects
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Existence and Uniqueness of Solutions for Fractional Dynamic Equations with Impulse Effects

  • Svetlin G. Georgiev und Sibel Doğru Akgöl EMAIL logo
Veröffentlicht/Copyright: 6. Dezember 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The aim of the study is to establish sufficient conditions to ensure the existence and uniqueness of solutions for nonlinear Riemann-Liouville fractional dynamic equations under impulse effects. The current state of the literature reveals a visible gap in the investigation of the existence-uniqueness aspects of such equations, and this research makes a significant contribution to filling this gap. To highlight the practical implications of our results, we present an illustrative example that exemplifies the applicability of the established conditions.

  1. Communicated by Jozef Džurina

References

[1] Agarwal, R. P.—Bohner, M.: Basic calculus on time scales and some of its applications, Results Math. 35(1) 1999, 3–22.10.1007/BF03322019Suche in Google Scholar

[2] Bainov, D.—Simeonov, P.: Impulsive Differential Equations: Periodic Solutions and Applications, CRC Press, 1993.Suche in Google Scholar

[3] Bainov, D.—Simeonov, P.: Systems with Impulse Effect: Stability, Theory, and Applications, Ellis Horwood, 1989.Suche in Google Scholar

[4] Bohner, M.—Peterson, A.: Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.10.1007/978-0-8176-8230-9Suche in Google Scholar

[5] Bohner, M.—Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Basel, 2001.10.1007/978-1-4612-0201-1Suche in Google Scholar

[6] Bohner, M.—Georgiev, S. G.: Multivariable Dynamic Calculus on Time Scales, Springer, Switzerland, 2016.10.1007/978-3-319-47620-9Suche in Google Scholar

[7] Danca, M. F.—Fečkan, M.—Chen, G.: Impulsive stabilization of chaos in fractional-order systems, Nonlinear Dynam. 89 (2017), 1889–1903.10.1007/s11071-017-3559-1Suche in Google Scholar

[8] Erhan, I. M.—Georgiev, S. G.: Nonlinear Integral Equations on Time Scales, Nova Science Publishers, 2019.10.1007/978-3-030-15420-2Suche in Google Scholar

[9] Georgiev, S. G.: Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales, Springer, 2018.10.1007/978-3-319-73954-0Suche in Google Scholar

[10] Gogoi, B.—Saha, U. K.—Hazarika, B.: Impulsive fractional dynamic equation with non-local initial condition on time scales, Bol. Soc. Parana. Mat. 42 (2024), 1–13.10.5269/bspm.65039Suche in Google Scholar

[11] Heymans, N.—Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheol. Acta 45(5) (2005), 765–771.10.1007/s00397-005-0043-5Suche in Google Scholar

[12] Hilger, S.: Ein Maβkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD thesis, Universität Würzburg, 1988.Suche in Google Scholar

[13] Hilger, S.: Analysis on measure chains – A unified approach to continuous and discrete calculus, Results Math. 18 (1990), 18–56.10.1007/BF03323153Suche in Google Scholar

[14] Kayar, Z.: An existence and uniqueness result for linear fractional impulsive boundary value problems as an application of Lyapunov type inequality, Hacet. J. Math. Stat. 47(2) (2018), 287–297.Suche in Google Scholar

[15] Kaymakçalan, B.—Lakshmikantham, V.—Sivasundaram, S.: Dynamic Systems on Measure Chains, Dordrecht, Kluwer, 1996.10.1007/978-1-4757-2449-3Suche in Google Scholar

[16] Kilbas, A. A.—Srivastava, H. M.—Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Vol. 204, Elsevier Science B. V., Amsterdam, 2006.Suche in Google Scholar

[17] Kumar, V.—Malik, M.: Existence, uniqueness and stability of nonlinear implicit fractional dynamical equation with impulsive condition on time scales, Nonautonomous Dyn. Syst. 6 (2019), 65–80.10.1515/msds-2019-0005Suche in Google Scholar

[18] Lakshmikantham, V.—Simeonov, P.: Theory of Impulsive Differential Equations, Vol. 6, World Scientific, 1989.10.1142/0906Suche in Google Scholar

[19] Li, K.—Peng, J.—Jia, J.: Cauchy problems for fractional differential equations with RiemannLiouville fractional derivatives, J. Funct. Anal. 263(2) (2012), 476–510.10.1016/j.jfa.2012.04.011Suche in Google Scholar

[20] Lyons, J. W.—Neugebauer, J. T.: Existence of a positive solution for a singular fractional boundary value problem with fractional boundary conditions using convolution and lower order problems, Turkish J. Math. 45(1) (2021), 125–138.10.3906/mat-2008-61Suche in Google Scholar

[21] Miller, K. S.—Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993.Suche in Google Scholar

[22] Podlubny, I.: Fractional Differential Equations, Math. Sci. Eng., Vol. 198, Academic Press, Inc., San Diego, CA, 1999.Suche in Google Scholar

[23] Sabatier, J.—Agrawal, O. P.—Tenreiro Machado, J. A.: Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007.10.1007/978-1-4020-6042-7Suche in Google Scholar

Received: 2024-01-19
Accepted: 2024-09-12
Published Online: 2024-12-06
Published in Print: 2024-12-15

© 2024 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 17.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0107/pdf?lang=de
Button zum nach oben scrollen