Home Mathematics A topological duality for tense modal pseudocomplemented De Morgan algebras
Article
Licensed
Unlicensed Requires Authentication

A topological duality for tense modal pseudocomplemented De Morgan algebras

  • Gustavo Pelaitay EMAIL logo and Maia Starobinsky
Published/Copyright: June 24, 2024
Become an author with De Gruyter Brill

Abstract

In this paper, we define and study the variety of tense modal pseudocomplemented De Morgan algebras. This variety is a proper subvariety of the variety of tense tetravalent modal algebras. A tense modal pseudocomplemented De Morgan algebra is a modal pseudocomplemented De Morgan algebra endowed with two tense operators G and H satisfying additional conditions. Also, the variety of tense modal pseudocomplemented De Morgan algebras is intimately connected with some well-known varieties of De Morgan algebras with tense operators.


Gustavo Pelaitay thanks the institutional support of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)


  1. Communicated by Anatolij Dvurečenskij

References

[1] Adams, M. E.—Sankappanavar, H. P.—Vaz de Carvalho, J.: Varieties of regular pseudocomplemented De Morgan algebras, Order 37(3) (2020), 529–557.10.1007/s11083-019-09518-ySearch in Google Scholar

[2] Balbes, R.—Dwinger, P.: Distributive Lattices, University of Missouri Press, Columbia, 1974.Search in Google Scholar

[3] Birkhoff, G.: Lattice Theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., Vol. 25, Providence, 1967.Search in Google Scholar

[4] Burges, J.: Basic tense logic. In: Handbook of Philosophical Logic (D. M. Gabbay, F. Günter, eds.), Vol. II, Reidel, Dordrecht, 1984, pp. 89–139.10.1007/978-94-009-6259-0_2Search in Google Scholar

[5] Burris, S.—Sankappanavar, H. P.: A Course in Universal Algebra, Grad. Texts in Math., Vol. 78, Springer, Berlin, 1981.10.1007/978-1-4613-8130-3Search in Google Scholar

[6] Celani, S.: A note on homomorphisms of tetravalent modal algebras, Bol. Soc. Parana. Mat. (2) 17(1–2) (1997), 65–70 (in Spanish).Search in Google Scholar

[7] Celani, S.: Classical modal De Morgan algebras, Studia Logica 98(1–2) (2011), 251–266.10.1007/s11225-011-9328-0Search in Google Scholar

[8] Chajda, I.—Halaš, R.—Kühr, J.: Semilattice Structures. Research and Exposition in Mathematics, Vol. 30, Heldermann, Lemgo, 2007.Search in Google Scholar

[9] Chajda, I.—Paseka, J.: De Morgan algebras with tense operators, J. Mult.-Valued Logic Soft Comput. 28(1) (2017), 29–45.Search in Google Scholar

[10] Chajda, I.—Paseka, J.: The Poset-based logics for the De Morgan negation and set representation of partial dynamic De Morgan algebras, J. Mult.-Valued Logic Soft Comput. 31(3) (2018), 213–237.Search in Google Scholar

[11] Chirita, C.: Three-valued temporal logic, Annals of the Bucharest University LIV (2005), 75–90.Search in Google Scholar

[12] Coniglio, M.–Figallo, M.: Hilbert-style presentations of two logics associated to tetravalent modal algebras, Studia Logica 102(3) (2014), 525–539.10.1007/s11225-013-9489-0Search in Google Scholar

[13] Cornish, W.—Fowler, P.: Coproducts of De Morgan algebras, Bull. Aust. Math. Soc. 16 (1977), 1–13.10.1017/S0004972700022966Search in Google Scholar

[14] Diaconescu, D.—Georgescu, G.: Tense operators on MV-algebras and Łukasiewicz-Moisil algebras, Fund. Inform. 81(4) (2007), 379–408.Search in Google Scholar

[15] Figallo, A. V.—Landini, P.: Notes on 4-valued modal algebras, Preprints del Instituto de Ciencias Básicas, Universidad Nacional de San Juan 1 (1990), pp. 28–37.Search in Google Scholar

[16] Figallo, A. V.: Tópicos sobre álgebras modales 4-valuadas. In: Proceeding of the IX Simposio Latino–Americano de Lógica Matemática (Bahía Blanca, Argentina, 1992); Notas de Lógica Matemática 39 (1992), 145–157.Search in Google Scholar

[17] Figallo, A. V.—Oliva, N.—Zilliani, N.: Modal pseudocomplemented De Morgan algebras, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 53(1) (2014), 65–79.Search in Google Scholar

[18] Figallo, A. V.—Pelaitay, G.: Tense operators on De Morgan algebras, Log. J. IGPL 22(2) (2014), 255–267.10.1093/jigpal/jzt024Search in Google Scholar

[19] Figallo, A. V.—Oliva, N.—Zilliani, N.: Free modal pseudocomplemented De Morgan algebras, Bull. Sect. Logic Univ. Lódz 47(2) (2018), 89–106.10.18778/0138-0680.47.2.02Search in Google Scholar

[20] Figallo, A. V.—Pelaitay, G.: Localization of tetravalent modal algebras, Asian-Eur. J. Math. 11(5) (2018), Art. ID 1850067.10.1142/S1793557118500675Search in Google Scholar

[21] Figallo, A. V.—Pascual, I.—Pelaitay, G.: A topological duality for tense LMn-algebras and applications, Log. J. IGPL(4) 26 (2018), 339–380.10.1093/jigpal/jzx056Search in Google Scholar

[22] Figallo, M.: Cut-free sequent calculus and natural deduction for the tetravalent modal logic, Studia Logica 109(6) (2021), 1347–1373.10.1007/s11225-021-09944-3Search in Google Scholar

[23] Font, J. M.—Rius, M.: An abstract algebraic logic approach to tetravalent modal logics, J. Symbolic Logic 65(2) (2000), 481–518.10.2307/2586552Search in Google Scholar

[24] Glivenko, V.: Sur quelques points de la logique de M. Brouwer, Acad. Roy. Belg. Bull. Cl. Sci. 15 (1929), 183–188.Search in Google Scholar

[25] Gregori, V.: Discrete duality for De Morgan algebras with operators, Asian-Eur. J. Math. 12(1) (2019), Art. ID 1950010.10.1142/S1793557119500104Search in Google Scholar

[26] Luoreiro, I.: Finitely generated free tetravalent modal algebras, Discrete Math. 46(1) (1983), 41–48.10.1016/0012-365X(83)90268-6Search in Google Scholar

[27] Luoreiro, I.: Prime spectrum of a tetravalent modal algebra, Notre Dame J. Formal Logic 24(3) (1983), 389–394.10.1305/ndjfl/1093870382Search in Google Scholar

[28] Luoreiro, I.: Finite tetravalent modal algebras, Rev. Un. Mat. Argentina 31(4) (1984), 187–191.Search in Google Scholar

[29] Mac Lane, S.: Categories for the Working Mathematician, Springer–Verlag, Berlin, 1971.10.1007/978-1-4612-9839-7Search in Google Scholar

[30] Orellano, A. F.—Pascual, I.: On monadic operators on modal pseudocomplemented De Morgan algebras and tetravalent modal algebras, Studia Logica 107(4) (2019), 591–611.10.1007/s11225-018-9802-zSearch in Google Scholar

[31] Pelaitay, G.: Un Estudio Algebraico de Operadores Temporales Definibles en Versiones Algebraicas de Diversas Lógicas, PhD. Thesis, Bahía Blanca, Argentina, 2015.Search in Google Scholar

[32] Priestley, H. A.: Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970), 186–190.10.1112/blms/2.2.186Search in Google Scholar

[33] Priestley, H. A.: Ordered topological spaces and the representation of distributive lattices, P. London Math. Soc. 3, 24 (1972), 507–530.10.1112/plms/s3-24.3.507Search in Google Scholar

[34] Priestley, H. A.: Ordered sets and duality for distributive lattices, Ann. Discrete Math. 23 (1984), 39–60.10.1016/S0304-0208(08)73814-3Search in Google Scholar

[35] Romanowska, A.: Subdirectly irreducible pseudocomplemented De Morgan algebras, Algebra Universalis 12(1) (1981), 70–75.10.1007/BF02483864Search in Google Scholar

[36] Ribenboim, P.: Characterization of the sup-complement in a distributive lattice with last element, Summa Brasil. Math. 2(4) (1949), 43–49.Search in Google Scholar

[37] Sankappanavar, H.: Pseudocomplemented Okham and Demorgan algebras, Z. Math. Logik Grundlagen Math. 32 (1986), 385–394.10.1002/malq.19860322502Search in Google Scholar

[38] Sankappanavar, H.: Principal congruences of pseudocomplemented Demorgan algebras, Z. Math. Logik Grundlagen Math. 33 (1987), 3–11.10.1002/malq.19870330102Search in Google Scholar

[39] Segura, C.: Tense De Morgan S4-algebras, Asian-Eur. J. Math. 15(1) (2022), Art. ID 2250014.10.1142/S1793557122500140Search in Google Scholar

Received: 2023-06-18
Accepted: 2023-09-29
Published Online: 2024-06-24
Published in Print: 2024-06-25

© 2024 Mathematical Institute Slovak Academy of Sciences

Articles in the same Issue

  1. On the Paley graph of a quadratic character
  2. A topological duality for tense modal pseudocomplemented De Morgan algebras
  3. Fibonacci numbers as mixed concatenations of Fibonacci and Lucas numbers
  4. A general formula in composition theory
  5. A nonlinear Filbert-like matrix with three free parameters: From linearity to nonlinearity
  6. On universality in short intervals for zeta-functions of certain cusp forms
  7. On asymptotics for lacunary partition functions
  8. Parallel surfaces of the non-lightlike solution of vortex filament equations
  9. New q-analogues of Van Hamme’s (F.2) supercongruence and of some related supercongruences
  10. Kneser-type oscillation theorems for second-order functional differential equations with unbounded neutral coefficients
  11. Approximation theorems via Pp-statistical convergence on weighted spaces
  12. Global existence and multiplicity of positive solutions for anisotropic eigenvalue problems
  13. Theoretical analysis of higher-order system of difference equations with generalized balancing numbers
  14. On a solvable difference equations system of second order its solutions are related to a generalized Mersenne sequence
  15. Positive bases, cones, Helly-type theorems
  16. Digital Jordan surfaces arising from tetrahedral tiling
  17. Influence of ideals in compactifications
  18. On the functions ωf and Ωf
  19. On the 𝓐-generators of the polynomial algebra as a module over the Steenrod algebra, I
  20. A bivariate distribution with generalized exponential conditionals
  21. A note on boundary feedback stabilization for degenerate parabolic equations in multi-dimensional domains
Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0041/pdf
Scroll to top button