Home On the functions ωf and Ωf
Article
Licensed
Unlicensed Requires Authentication

On the functions ωf and Ωf

  • Javier Camargo EMAIL logo , Johan Cancino and Carlos Islas
Published/Copyright: June 24, 2024
Become an author with De Gruyter Brill

Abstract

Given a compactum X, a map f : XX and xX, it is defined ω(x, f) = {yX : there exists an increasing sequence (ni)i∈ℕ ⊆ ℕ such that limi fni(x) = y}; and Ω(x, f) = {yX : there exist an increasing sequence (ni)i∈ℕ ⊆ ℕ and a sequence (xi)i∈ℕ in X such that limi xi = x and limi fni(xi) = y}. It is well known that both ω(x, f) and Ω(x, f) are nonempty compact subsets of X. 2X denotes the collection of all the nonempty compact subsets of X endowed with the Hausdorff metric. In this paper, we consider ωf : X → 2X and Ωf : X → 2X defined for each xX by ωf(x) = ω(x, f) and Ωf(x) = Ω(x, f), respectively. We study the continuity of these functions, when f is defined on some kind of continua.

MSC 2010: Primary 54H20; 37B45

The first author thanks La Vicerrectoría de Investigación y Extensión de la Universidad Industrial de Santander y su Programa de Movilidad for financial support. Also, the first author thanks La Universidad Autónoma de la Ciudad de México for the partial support during this research. The third author thanks to the project CCH-ACA-022-004-2 of the Universidad Autónoma de la Ciudad de México for the financial support.


Acknowledgement

The authors thank the referee for her/his valuable comments to improve the paper.

  1. Communicated by L’ubica Holá

References

[1] Abdelli, H.—Askri, G.—Kedim, I.: Equicontinuity of maps on local dendrites, Qual. Theory Dyn. Syst. 20 (2021), Art. No. 61.10.1007/s12346-021-00499-1Search in Google Scholar

[2] Barwell, A. D.: ω-Limit Sets of Discrte Dynamical Systems, Doctoral Thesis (Ph.D.), University of Birmingham, 2010, 152 pp.Search in Google Scholar

[3] Bing, R. H.—Jones, E. B.: Another homogeneous plane continuum, Trans. Amer. Math. Soc. 90 (1959) 171–192.10.1090/S0002-9947-1959-0100823-3Search in Google Scholar

[4] Block, L. S.—Coppel, W. A.: Dynamics in One Dimension, Lecture Notes in Math., Vol. 1513, Springer-Verlag, Berlin, 1992.10.1007/BFb0084762Search in Google Scholar

[5] Borsuk, K.: A theorem on fixed points, Bull. Acad. Polon. Sci. 2 (1954), 12–20.Search in Google Scholar

[6] Bruckner, A.—Ceder, J.: Chaos in terms of the map x → ω(x, f), Pacific J. Math. 156 (1992), 63–96.10.2140/pjm.1992.156.63Search in Google Scholar

[7] Brucks, K.—Bruin H.: Topics from One-Dimensional Dynamics, London Math. Soc. Stud. Texts, Vol. 62, Cambridge University Press, 2004.10.1017/CBO9780511617171Search in Google Scholar

[8] Camargo, J.—Rincón, M.—Uzcátegui, C.: Equicontinuity of maps on dendrites, Chaos Solitons Fractals 126 (2019), 1–6.10.1016/j.chaos.2019.05.033Search in Google Scholar

[9] Camargo, J.—Cancino, J.: The ω-limit function on dendrites, Topology Appl. 282 (2020), 1–11.10.1016/j.topol.2020.107320Search in Google Scholar

[10] Dugundji, J.: Topology, Allyn and Bacon Inc., Boston, 1966.Search in Google Scholar

[11] García-Ferreira, S.—Vidal-Escobar, I.: The function ωf on simple n-ods, Appl. Gen. Topol. 20(2) (2019), 325–347.10.4995/agt.2019.11065Search in Google Scholar

[12] Hagopian, C. L.—Manka, R.: Rational irreducible plane continua without the fixed-point property, Proc. Amer. Math. Soc. 133(2) (2005), 617–625.10.1090/S0002-9939-04-07543-4Search in Google Scholar

[13] Illanes, A.—Nadler, S. B., Jr.: Hyperspaces: Fundamentals and Recent Advances. Pure Appl. Math., Vol. 216, Chapman & Hall/CRC, 1992.Search in Google Scholar

[14] King, J.—Méndez, H.: Sistemas Dinámicos Discretos, Editorial UNAM, México, 2014.Search in Google Scholar

[15] Kuratowski, K.: Topology, Vol 2., Academic Press and PWN, New York, London, Warszawa, 1968.Search in Google Scholar

[16] Macías, S.: Topics on Continua, 2nd ed., Springer-Cham, 2018.10.1007/978-3-319-90902-8Search in Google Scholar

[17] Nadler, S. B., Jr.: Continuum Theory, Marcel Dekker Inc., New York, 1992.Search in Google Scholar

[18] Nadler, Jr., S. B.: Hyperspaces of Sets. A Text with Research Questions, Aportaciones Mat., Vol. 33, Sociedad Matematica Mexicana, 2006.Search in Google Scholar

[19] Su, G.—Sun, T.—Han, C.—Qin, B.: Characteristic of pointwise-recurrent maps on a dendrites, Dyn. Syst. Geom. Theor. 18(1) (2020), 1–14.10.1080/1726037X.2020.1779971Search in Google Scholar

[20] Sun, T.—Chen, Z.—Liu, X.—Xi, H.: Equicontinuity of dendrite maps, Chaos Solitons Fractals 69 (2014), 10–13.10.1016/j.chaos.2014.08.010Search in Google Scholar

[21] Sun, T.—Su, G.—Xi, H.: Equicontinuity of maps on a dendrite with finite branch points, Acta Math. Sin. 33(8) (2017), 1125–1130.10.1007/s10114-017-6289-xSearch in Google Scholar

[22] Sun, T.—Zhan, Y.—Zhan, X.: Equicontinuity of graph maps, Bull. Aust. Math. Soc. 71 (2005), 61–67.10.1017/S0004972700038016Search in Google Scholar

[23] Thomas, E. S., Jr.: Monotone decompositions of irreducible continua, Rozprawy Mat. 50 (1966), 1–74.Search in Google Scholar

[24] Whyburn, G. T.: Analytic Topology, Amer. Math. Soc. Colloq. Publ., Vol. 28, Amer. Math. Soc., Providence, R. I., 1942.Search in Google Scholar

Received: 2023-05-03
Accepted: 2023-10-20
Published Online: 2024-06-24
Published in Print: 2024-06-25

© 2024 Mathematical Institute Slovak Academy of Sciences

Articles in the same Issue

  1. On the Paley graph of a quadratic character
  2. A topological duality for tense modal pseudocomplemented De Morgan algebras
  3. Fibonacci numbers as mixed concatenations of Fibonacci and Lucas numbers
  4. A general formula in composition theory
  5. A nonlinear Filbert-like matrix with three free parameters: From linearity to nonlinearity
  6. On universality in short intervals for zeta-functions of certain cusp forms
  7. On asymptotics for lacunary partition functions
  8. Parallel surfaces of the non-lightlike solution of vortex filament equations
  9. New q-analogues of Van Hamme’s (F.2) supercongruence and of some related supercongruences
  10. Kneser-type oscillation theorems for second-order functional differential equations with unbounded neutral coefficients
  11. Approximation theorems via Pp-statistical convergence on weighted spaces
  12. Global existence and multiplicity of positive solutions for anisotropic eigenvalue problems
  13. Theoretical analysis of higher-order system of difference equations with generalized balancing numbers
  14. On a solvable difference equations system of second order its solutions are related to a generalized Mersenne sequence
  15. Positive bases, cones, Helly-type theorems
  16. Digital Jordan surfaces arising from tetrahedral tiling
  17. Influence of ideals in compactifications
  18. On the functions ωf and Ωf
  19. On the 𝓐-generators of the polynomial algebra as a module over the Steenrod algebra, I
  20. A bivariate distribution with generalized exponential conditionals
  21. A note on boundary feedback stabilization for degenerate parabolic equations in multi-dimensional domains
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0057/html
Scroll to top button