On Index and Monogenity of Certain Number Fields Defined by Trinomials
-
Lhoussain El Fadil
ABSTRACT
Let K be a number field generated by a root θ of a monic irreducible trinomial
Acknowledgement
The author is deeply grateful to the anonymous referees whose valuable comments and suggestions have tremendously improved the quality of this paper. As well as for Professor István Gaál for his encouragement and advice and for Enric Nart who introduced him to Newton polygon techniques.
REFERENCES
[1] AHMAD, S.—NAKAHARA, T.—HAMEED, A: On certain pure sextic fields related to a problem of Hasse, Int. J. Alg. Comput. 26(3) (2016), 577–583.10.1142/S0218196716500259Search in Google Scholar
[2] BEN YAKKOU, H.—EL FADIL, L.: On monogenity of certain number fields defined by trinomials, Funct. Approx. Comment. Math. 67(2) (2022), 199–221.10.7169/facm/1987Search in Google Scholar
[3] CARLITZ, L.: A note on common index divisors, Proc. Amer. Math. Soc. 3 (1952), 688–692.10.1090/S0002-9939-1952-0050627-4Search in Google Scholar
[4] COHEN, H.: A Course in Computational Algebraic Number Theory. GTM 138, Springer-Verlag Berlin Heidelberg, 1993.10.1007/978-3-662-02945-9Search in Google Scholar
[5] DEDEKIND, R.: Uber den Zusammenhang zwischen der Theorie der Ideale und der Theorie der hUheren Kongruenzen, Göttingen Abhandlungen 23 (1878), 1–23.Search in Google Scholar
[6] DAVIS, C. T.—SPEARMAN, B. K.: The index of a quartic field defined by a trinomial x 4 + ax + b, J. Algebra Appl. 17(10) (2018), Art. ID 1850197.10.1142/S0219498818501979Search in Google Scholar
[7] EL FADIL, L.: On non monogenity of certain number fields defined by a trinomial x 6 + ax 3 + b, J. Number Theory 239 (2022), 489–500.10.1016/j.jnt.2021.10.017Search in Google Scholar
[8] EL FADIL, L.: On common index divisor and monogenity of certain number fields defined by a trinomial x 5 + ax 2 + b, Commun. Algebra 50(7) (2022), 3102–3112.10.1080/00927872.2022.2025820Search in Google Scholar
[9] EL FADIL, L.: On Newton polygon’s techniques and factorization of polynomial over Henselian valued fields, J. Algebra Appl. 19(10) (2020), Art. ID 2050188.10.1142/S0219498820501881Search in Google Scholar
[10] EL FADIL, L.: On power integral bases of certain pure number fields defined by x 3 7 s , Colloq. Math. 169 (2022), 307–317.10.4064/cm8574-6-2021Search in Google Scholar
[11] EL FADIL, L.—MONTES, J.—NART, E.: Newton polygons and p-integral bases of quartic number fields, J. Algebra Appl. 11(4) (2012), Art. ID 125073.10.1142/S0219498812500739Search in Google Scholar
[12] ENGSTROM, H. T.: On the common index divisors of an algebraic field, Trans. Amer. Math. Soc. 32(2) (1930), 223–237.10.1090/S0002-9947-1930-1501535-0Search in Google Scholar
[13] GAÁL, I.: An experiment on the monogenity of a family of trinomials, JP J. Algebra Number Theory Appl. 51(1) (2021), 97–111.10.17654/NT051010097Search in Google Scholar
[14] GAÁL, I.: Diophantine Equations and Power Integral Bases, Theory and Algorithm, 2nd edition, Boston, Birkhäuser, 2019.10.1007/978-3-030-23865-0Search in Google Scholar
[15] GUARDIA, J.—MONTES, J.—NART, E.: Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc. 364(1) (2012), 361–416.10.1090/S0002-9947-2011-05442-5Search in Google Scholar
[16] HASSE, K.: Zahlentheorie, Akademie-Verlag, Berlin, 1963.10.1515/9783112478202Search in Google Scholar
[17] HASSE, K.: Theorie der Algebraischen Zahlen, Teubner Verlag, Leipzig, Berlin, 1908.Search in Google Scholar
[18] HASSE, K.: Arithmetische Untersuchungen ber Discriminanten und ihre Ausserwesentlichen Theiler, Dissertation, Univ. Berlin, 1884.Search in Google Scholar
[19] IBARRA, R.—LEMBECK, H.—OZASLAN, M.—SMITH, H.—STANGE, K. E.: Monogenic fields arising from trinomials, Involve 15(2) (2022), 299–317.10.2140/involve.2022.15.299Search in Google Scholar
[20] JAKHAR, A.—KUMAR, S.: On non-monogenic number fields defined by x 6 + ax + b, Canad. Math. Bull. 65(3) (2022), 788–794.10.4153/S0008439521000825Search in Google Scholar
[21] JAKHAR, A,—KHANDUJA, S.—SANGWAN, N.: Characterization of primes dividing the index of a trinomial, Int. J. Number Theory 13(10) (2017), 2505–2514.10.1142/S1793042117501391Search in Google Scholar
[22] JHORAR, B.—KHANDUJA, S.: On power basis of a class of algebraic number fields, Int. J. Number Theory 12(8) (2016), 2317–2321.10.1142/S1793042116501384Search in Google Scholar
[23] JONES, L.: Infinite families of non-monogenic trinomials, Acta Sci. Math. 87(1–2) (2021), 95–105.10.14232/actasm-021-463-3Search in Google Scholar
[24] JONES, L.: Some new infinite families of monogenic polynomials with non-squarefree discriminant, Acta Arith. 197(2) (2021), 213–219.10.4064/aa200211-21-7Search in Google Scholar
[25] JONES, L.—TRISTAN, PH.: Infinite families of monogenic trinomials and their Galois groups, Int. J. Math. 29(5) (2018), Art. ID 185039.10.1142/S0129167X18500398Search in Google Scholar
[26] JONES, L.—WHITE, D.: Monogenic trinomials with non-squarefree discriminant, Int. J. Math. 32(13) (2021), Art. ID 215089.10.1142/S0129167X21500890Search in Google Scholar
[27] MONTES, J.—NART, E.: On a theorem of Ore, J. Algebra 146(2) (1992), 318–334.10.1016/0021-8693(92)90071-SSearch in Google Scholar
[28] MOTODA, Y.—NAKAHARA, T.—SHAH, S. I. A.: On a problem of Hasse, J. Number Theory 96 (2002), 326–334.10.1006/jnth.2002.2805Search in Google Scholar
[29] NEUKIRCH, J.: Algebraic Number Theory, Springer-Verlag, Berlin, 1999.10.1007/978-3-662-03983-0Search in Google Scholar
[30] ORE, O.: Newtonsche Polygone in der Theorie der algebraischen Korper, Math. Ann 99 (1928), 84–117.10.1007/BF01459087Search in Google Scholar
[31] PETHÖ, A.—POHST, M.: On the indices of multiquadratic number fields, Acta Arith. 153(4) (2012), 393–414.10.4064/aa153-4-4Search in Google Scholar
© 2023 Mathematical Institute Slovak Academy of Sciences
Articles in the same Issue
- A Note on Special Subsets of the Rudin-Frolík Order for Regulars
- The 2-Class Group of Certain Families of Imaginary Triquadratic Fields
- The Deranged Bell Numbers
- On Index and Monogenity of Certain Number Fields Defined by Trinomials
- The k-Generalized Lucas Numbers Close to a Power of 2
- Shifted Power of a Polynomial with Integral Roots
- Further Insights into the Mysteries of the Values of Zeta Functions at Integers
- Memoryless Properties on Time Scales
- A Study of the Higher-Order Schwarzian Derivatives of Hirotaka Tamanoi
- Besov and Triebel-Lizorkin Capacity in Metric Spaces
- Oscillation of Odd Order Linear Differential Equations with Deviating Arguments with Dominating Delay Part
- An Elliptic Type Inclusion Problem on the Heisenberg Lie Group
- Existence Result for a Double Phase Problem Involving the (p(x), q(x))-Laplacian Operator
- A New Series Space Derived by Absolute Generalized Nörlund Means
- Examples of Weinstein Domains in the Complement of Smoothed Total Toric Divisors
- The Uniform Effros Property and Local Homogeneity
- Limit Theorems for Weighted Sums of Asymptotically Negatively Associated Random Variables Under Some General Conditions
- The Unit-Gompertz Quantile Regression Model for the Bounded Responses
- An Extended Gamma-Lindley Model and Inference for the Prediction of Covid-19 in Tunisia
- Modeling Bivariate Data Using Linear Exponential and Weibull Distributions as Marginals
Articles in the same Issue
- A Note on Special Subsets of the Rudin-Frolík Order for Regulars
- The 2-Class Group of Certain Families of Imaginary Triquadratic Fields
- The Deranged Bell Numbers
- On Index and Monogenity of Certain Number Fields Defined by Trinomials
- The k-Generalized Lucas Numbers Close to a Power of 2
- Shifted Power of a Polynomial with Integral Roots
- Further Insights into the Mysteries of the Values of Zeta Functions at Integers
- Memoryless Properties on Time Scales
- A Study of the Higher-Order Schwarzian Derivatives of Hirotaka Tamanoi
- Besov and Triebel-Lizorkin Capacity in Metric Spaces
- Oscillation of Odd Order Linear Differential Equations with Deviating Arguments with Dominating Delay Part
- An Elliptic Type Inclusion Problem on the Heisenberg Lie Group
- Existence Result for a Double Phase Problem Involving the (p(x), q(x))-Laplacian Operator
- A New Series Space Derived by Absolute Generalized Nörlund Means
- Examples of Weinstein Domains in the Complement of Smoothed Total Toric Divisors
- The Uniform Effros Property and Local Homogeneity
- Limit Theorems for Weighted Sums of Asymptotically Negatively Associated Random Variables Under Some General Conditions
- The Unit-Gompertz Quantile Regression Model for the Bounded Responses
- An Extended Gamma-Lindley Model and Inference for the Prediction of Covid-19 in Tunisia
- Modeling Bivariate Data Using Linear Exponential and Weibull Distributions as Marginals