Startseite Mathematik Asymptotic stability of nonlinear neutral delay integro-differential equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Asymptotic stability of nonlinear neutral delay integro-differential equations

  • Grzegorz Nowak , Samir H. Saker und Aneta Sikorska-Nowak EMAIL logo
Veröffentlicht/Copyright: 15. Februar 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, by using Sadovskii’s fixed point theorem and the properties of the measure of noncompactness, we establish some sufficient conditions for the asymptotic stability results of nonlinear neutral integro-differential equations with variable delays. The results presented in this paper improve and generalize some results in the literature. An example is considered to illustrate our main results.

  1. (Communicated by Jozef Džurina )

References

[1] Ambrossetti, A.: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova 39 (1967), 349–360.Suche in Google Scholar

[2] Ardjouni, A.—Djoudi, A.: Fixed points and stability in linear neutral differential equations with variable delays, Nonlinear Anal. 74 (2011), 2062–2070.10.1016/j.na.2010.10.050Suche in Google Scholar

[3] Ardjouni, A.—Djoudi, A.: Stability in nonlinear neutral differential with variable delays using fixed point theory, Electron. J. Qual. Theory Differ. Equ. 2011 (2011), Art. No. 43.10.14232/ejqtde.2011.1.43Suche in Google Scholar

[4] Ardjouni, A.—Djoudi, A.: Fixed points and stability in linear neutral differential equations with variable delays, Opuscula Math. 32(1) (2012), 5–9.Suche in Google Scholar

[5] Ardjouni, A.—Djoudi, A.—Soualhia, I.: Stability for linear neutral integro-differential equations with variable delays, Electron. J. Qual. Theory Differ. Equ. 2012 (2012), Art. No. 172.10.7494/OpMath.2012.32.1.5Suche in Google Scholar

[6] Boe, E.—Chang, H. C.: Dynamics of delayed systems under feedback control, Chem. Engng. Sci. 44 (1989), 1281–1294.10.1016/0009-2509(89)85002-XSuche in Google Scholar

[7] Brayton, R. K.—Willoughby, R. A.: On the numerical integration of a symmetric system of difference-differential equations of Neutral type, J. Math. Anal. Appl. 18 (1976), 182–189.10.1016/0022-247X(67)90191-6Suche in Google Scholar

[8] Banaś, J.—Goebel, K.: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure Appl. Math. 60, Mercel Dekker, New York and Basel, 1980.Suche in Google Scholar

[9] Becker, L. C.—Burton, T. A.: Stability, fixed points and inverse of delay, Proc. Roy. Soc. Edinb. A 136 (2006), 245–275.10.1017/S0308210500004546Suche in Google Scholar

[10] Burton, T. A.: Fixed points and stability of nonconvolution equation, Proc. Amer. Math. Soc. 132 (2004), 3679–3687.10.1090/S0002-9939-04-07497-0Suche in Google Scholar

[11] Burton, T. A.: Stability for Fixed Point Theory for Functional Differential Equations, Dover Publications, New York, 2006.Suche in Google Scholar

[12] Burton, T. A.: Liapunov functionals, fixed points, and stability by Krasnoselskii's theorem, Nonlinear Stud. 9 (2001), 181–190.Suche in Google Scholar

[13] Burton, T. A.: Stability by fixed point theory or Lyapunov theory: A comparison, Fixed Point Theory 4 (2003), 15–32.Suche in Google Scholar

[14] Burton, T. A.—Furumochi, T.: A note on stability by Schauder's theorem, Funkcial. Ekvac. 44 (2001), 73–82.Suche in Google Scholar

[15] Burton, T. A.—Furumochi, T.: Fixed points and problems in stability theory, Dyn. Sys. Appl. 10 (2001), 89–116.Suche in Google Scholar

[16] Burton, T. A.—Furumochi, T.: Asymptotic behavior of solutions of functional differential equations by fixed point theorems, Dyn. Sys. Appl. 11 (2002), 499–519.Suche in Google Scholar

[17] Burton, T. A.—Furumochi, T.: Krasnosielskii's fixed point theorem and stability, Nonlinear Anal. 49 (2002), 445–454.10.1016/S0362-546X(01)00111-0Suche in Google Scholar

[18] Dib, Y. M.—Maroun, M. R.—Raffoul, Y. N.: Periodicity and stability in neutral nonlinear differential equations with functional delay, Electron. J. Qual. Theory Differ. Equ. 2005 (2005), Art. No. 142.Suche in Google Scholar

[19] Djoudi, A.—Khemis, R.: Fixed point techniques and stability for neutral nonlinear differential equations with unbounded delays, Georgian Math. J. 13 (2006), 25–34.10.1515/GMJ.2006.25Suche in Google Scholar

[20] Driver, D. R.: A mixed neutral systems, Nonlinear Anal. 8 (1984), 155-158.10.1016/0362-546X(84)90066-XSuche in Google Scholar

[21] Jin, C. H.—Luo, J. W.: Stability of an integro-differential equation, Comp. Math. Appl. 57 (2009), 1080–1088.10.1016/j.camwa.2009.01.006Suche in Google Scholar

[22] Jin, C. H.—Luo, J. W.: Stability in functional differential equations established using fixed point theory, Nonlinear Anal. 68 (2008), 3307–3315.10.1016/j.na.2007.03.017Suche in Google Scholar

[23] Jin, C. H.—Luo, J. W.: Fixed points and stability in neutral differential equations with variable delays, Proc. Amer. Math. Soc. 136 (2008), 909–918.10.1090/S0002-9939-07-09089-2Suche in Google Scholar

[24] Hale, J. K.: Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.10.1007/978-1-4612-9892-2Suche in Google Scholar

[25] Popov, E. P.: Automatic Regulation and Control, Nauka, Moscow, 1966 (in Russian).Suche in Google Scholar

[26] Raffoul, Y. N.: Stability in neutral nonlinear differential equations with functional delays using fixed point theory, Math. Comput. Modelling 40 (2004), 691–700.10.1016/j.mcm.2004.10.001Suche in Google Scholar

[27] Sadovskii, B. N.: Limit-compact and condensing operators, Russian Math. Surveys 27 (1972), 86–144.10.1070/RM1972v027n01ABEH001364Suche in Google Scholar

Received: 2021-08-25
Accepted: 2022-02-10
Published Online: 2023-02-15
Published in Print: 2023-02-23

© 2023 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. RNDr. Stanislav Jakubec, DrSc. passed away
  2. Schur m-power convexity for general geometric Bonferroni mean of multiple parameters and comparison inequalities between several means
  3. Conditions forcing the existence of relative complements in lattices and posets
  4. Radically principal MV-algebras
  5. A topological duality for dcpos
  6. Padovan or Perrin numbers that are concatenations of two distinct base b repdigits
  7. Addendum to “A generalization of a result on the sum of element orders of a finite group”
  8. Remarks on w-distances and metric-preserving functions
  9. Solution of logarithmic coefficients conjectures for some classes of convex functions
  10. Multiple periodic solutions of nonautonomous second-order differential systems with (q, p)-Laplacian and partially periodic potentials
  11. Asymptotic stability of nonlinear neutral delay integro-differential equations
  12. On Catalan ideal convergent sequence spaces via fuzzy norm
  13. Fourier transform inversion: Bounded variation, polynomial growth, Henstock–Stieltjes integration
  14. (ε, A)-approximate numerical radius orthogonality and numerical radius derivative
  15. Wg-Drazin-star operator and its dual
  16. On the Lupaş q-transform of unbounded functions
  17. K-contact and (k, μ)-contact metric as a generalized η-Ricci soliton
  18. Compactness with ideals
  19. Number of cells containing a given number of particles in a generalized allocation scheme
  20. A new generalization of Nadarajah-Haghighi distribution with application to cancer and COVID-19 deaths data
  21. Compressive sensing using extropy measures of ranked set sampling
  22. A note on star partial order preservers on the set of all variance-covariance matrices
Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0011/pdf
Button zum nach oben scrollen