Startseite Mathematik Generalized hyperharmonic number sums with reciprocal binomial coefficients
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Generalized hyperharmonic number sums with reciprocal binomial coefficients

  • Rusen Li
Veröffentlicht/Copyright: 16. Oktober 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we mainly show that generalized hyperharmonic number sums with reciprocal binomial coefficients can be expressed in terms of classical (alternating) Euler sums, zeta values and generalized (alternating) harmonic numbers.

MSC 2010: 05A10; 11B65; 11B68; 11B83; 11M06
  1. (Communicated by István Gaál)

Acknowledgement

The author is grateful to the referee for her/his useful comments and suggestions.

References

[1] ABEL, N. H.: Untersuchungen über die Reihe J. Reine Angew Math. 1 (1826), 311–339.10.1515/crll.1826.1.311Suche in Google Scholar

[2] BAILEY, D. H. — BORWEIN, J. M. — GIRGENSOHN, R.: Experimental evaluation of Euler sums, Experiment. Math. 3(1) (1994), 17–30.10.1080/10586458.1994.10504573Suche in Google Scholar

[3] BENJAMIN, A. T. — GAEBLER, D. — GAEBLER, R.: A combinatorial approach to hyperharmonic numbers, Integers 3 (2003), Art. Id. A15.Suche in Google Scholar

[4] BERNDT, B. C.: Ramanujan’s Notebooks, Part I, Springer-Verlag, New York, 1985.10.1007/978-1-4612-1088-7Suche in Google Scholar

[5] CHEN, W. Y. C. — FU, A. M. — ZHANG, I. F.: Faulhaber’s theorem on power sums, Discrete Math. 309 (2009), 2974–2981.10.1016/j.disc.2008.07.027Suche in Google Scholar

[6] CHU, W.: Abel’s lemma on summation by parts and basic hypergeometric series, Adv. Appl. Math. 39 (2007), 490–514.10.1016/j.aam.2007.02.001Suche in Google Scholar

[7] CONWAY, J. H. — GUY, R. K.: The Book of Numbers, Springer, New York 1996.10.1007/978-1-4612-4072-3Suche in Google Scholar

[8] DEVOTO, A. — DUKE, D. W.: Table of integrals and formulae for Feynman diagram calculations, La Rivista del Nuovo Cimento 7(6) (1984), 1–39.10.1007/BF02724330Suche in Google Scholar

[9] DE DOELDER, P. J.: On some series containing ψ x − ψ y and (ψ x − ψ y))2 for certain values of x and y, J. Comput. Appl. Math. 37(1–3) (1991), 125–141.10.1016/0377-0427(91)90112-WSuche in Google Scholar

[10] DIL, A. — BOYADZHIEV, K. N.: Euler sums of hyperharmonic numbers, J. Number Theory 147 (2015), 490–498.10.1016/j.jnt.2014.07.018Suche in Google Scholar

[11] DIL, A. — MEZŐ, I. — CENKCI, M.: Evaluation of Euler-like sums via Hurwitz zeta values, Turkish J. Math. 41(6) (2017), 1640–1655.10.3906/mat-1603-4Suche in Google Scholar

[12] FLAJOLET, P. — SALVY, B.: Euler sums and contour integral representations, Experiment. Math. 7(1) (1998), 15–35.10.1080/10586458.1998.10504356Suche in Google Scholar

[13] KAMANO, K.: Dirichlet series associated with hyperharmonic numbers, Mem. Osaka Inst. Tech. Ser. A 56(2) (2011), 11–15.Suche in Google Scholar

[14] KNUTH, D. E.: The art of computer programming, Vols. 1–3, Addison-Wesley, Reading, Mass., 1968.Suche in Google Scholar

[15] LI, R.: Euler sums of generalized hyperharmonic numbers, Funct. Approximatio, Comment. Math. 66(2) (2022), 179–189.10.7169/facm/1953Suche in Google Scholar

[16] LI, R.: Euler sums of generalized alternating hyperharmonic numbers, Rocky Mountain J. Math. 51(4) (2021), 1299–1313.10.1216/rmj.2021.51.1299Suche in Google Scholar

[17] MATSUOKA, Y.: On the values of a certain Dirichlet series at rational integers, Tokyo J. Math. 5(2) (1982), 399–403.10.3836/tjm/1270214900Suche in Google Scholar

[18] MEZŐ, I. — DIL, A.: Hyperharmonic series involving Hurwitz zeta function, J. Number Theory 130 (2010), 360–369.10.1016/j.jnt.2009.08.005Suche in Google Scholar

[19] ÖMÜR, N. — KOPARAL, S.: On the matrices with the generalized hyperharmonic numbers of order r, Asian-Eur. J. Math. 11(3) (2018), Art. ID 1850045, 9 pp.10.1142/S1793557118500456Suche in Google Scholar

[20] SOFO, A.: Harmonic number sums in higher powers, J. Math. Appl. 2(2) (2011), 15–22.Suche in Google Scholar

[21] SOFO, A.: Quadratic alternating harmonic number sums, J. Number Theory 154 (2015), 144–159.10.1016/j.jnt.2015.02.013Suche in Google Scholar

[22] SOFO, A.: Second order alternating harmonic number sums, Filomat 30(13) (2016), 3511–3524.10.2298/FIL1613511SSuche in Google Scholar

Received: 2021-05-17
Accepted: 2021-08-21
Published Online: 2022-10-16
Published in Print: 2022-10-26

© 2022 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0076/pdf
Button zum nach oben scrollen