Startseite Mathematik The dimension Dind of finite topological T0-spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The dimension Dind of finite topological T0-spaces

  • Dimitrios N. Georgiou EMAIL logo , Yasunao Hattori , Athanasios C. Megaritis und Fotini Sereti
Veröffentlicht/Copyright: 11. Juni 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A. V. Arhangelskii introduced the dimension Dind and properties of this dimension have been studied for various classes of topological spaces. In this paper, we study this dimension for finite T0-spaces. Especially, we prove that in the realm of finite T0-spaces, Dind is less than or equal to the small inductive dimension ind, the large inductive dimension Ind and the covering dimension dim. We also study the “gaps” between Dind and the dimensions ind, Ind and dim, presenting various examples which shows these “gaps”. Moreover, in this field of spaces, we give characterizations of Dind, inserting the meaning of the maximal family of pairwise disjoint open sets, and study properties of this dimension.

MSC 2010: Primary 54F45
  1. (Communicated by L'ubica Holá)

Acknowledgement

The authors would like to thank the referee for very thorough report and for helpful comments that have improved the quality of this paper.

References

[1] Bass, D. W.: Covering dimension and quasi-order spaces, J. London Math. Soc. 2 (1969), 505–508.10.1112/jlms/s2-1.1.505Suche in Google Scholar

[2] Bass, D. W.: Dimension and finite spaces, J. London Math. Soc. 44 (1969), 159–162.10.1112/jlms/s1-44.1.159Suche in Google Scholar

[3] Berghammer, R.—Winter, M.: Order- and graph-theoretic investigation of dimensions of finite topological spaces and Alexandroff spaces, Monatsh. Math. 190(1) (2019), 33–78.10.1007/s00605-019-01261-1Suche in Google Scholar

[4] Charalambous, M. G.: Dimension Theory. A Selection of Theorems and Counterexamples. Atlantis Studies in Mathematics 7, Springer, Cham, 2019.10.1007/978-3-030-22232-1_2Suche in Google Scholar

[5] Chatyrko, V. A.—Pasynkov, B. A.: On sum and product theorems for dimension Dind, Houston J. Math. 28(1) (2002), 119–131.Suche in Google Scholar

[6] Chatyrko, V. A.—Han, Sang-Eon—Hattori, Y.: The small inductive dimension of Alexandroff spaces, Filomat 30(11) (2016), 3007–3014.10.2298/FIL1611007CSuche in Google Scholar

[7] Egorov, V.—Podstavkin, Ju.: A definition of dimension, Dokl. Akad. Nauk SSSR 178 (1968), 774–777 (in Russian).Suche in Google Scholar

[8] Engelking, R.: Theory of Dimensions, Finite and Infinite. Sigma Series in Pure Mathematics 10, Heldermann Verlag, Lemgo, 1995.Suche in Google Scholar

[9] Georgiou, D. N.—Han, Sang-Eon—Megaritis, A. C.: Dimensions of the type dim and Alexandroff spaces, J. Egyptian Math. Soc. 21(3) (2013), 311–317.10.1016/j.joems.2013.02.015Suche in Google Scholar

[10] Georgiou, D. N.—Megaritis, A. C.—Moshokoa, S. P.: A computing procedure for the small inductive dimension of a finite T0-space, Comput. Appl. Math. 34(1) (2015), 401–415.10.1007/s40314-014-0125-zSuche in Google Scholar

[11] Georgiou, D. N.—Megaritis, A. C.: An algorithm of polynomial order for computing the covering dimension of a finite space, Appl. Math. Comput. 231 (2014), 276–283.10.1016/j.amc.2013.12.185Suche in Google Scholar

[12] Georgiou, D. N.—Megaritis, A. C.: Covering dimension and finite spaces, Appl. Math. Comput. 218(7) (2011), 3122–3130.10.1016/j.amc.2011.08.040Suche in Google Scholar

[13] Georgiou, D. N.—Megaritis, A. C.—Moshokoa, S. P.: Small inductive dimension and Alexandroff topological spaces, Topology Appl. 168 (2014), 103–119.10.1016/j.topol.2014.02.014Suche in Google Scholar

[14] Georgiou, D. N.—Megaritis, A. C.—Sereti, F.: Base dimension-like function of the type Dind and universality, Topology Appl. 281 (2020), Art. No. 107201, 11 pp.10.1016/j.topol.2020.107201Suche in Google Scholar

[15] Kulpa, W.: A note on the dimension Dind, Colloq. Math. 24 (1971/72), 181–183.10.4064/cm-24-2-181-183Suche in Google Scholar

[16] Lifanov, I. K.: The large inductive dimension, Dokl. Akad. Nauk SSSR 184 (1969), 1288–1291 (in Russian).Suche in Google Scholar

[17] Malghan, S. R.—Ramani Iyengar, K. S.: A study of dimension function ``Dind" through triples, J. Karnatak Univ. Sci. 32 (1987), 174–183.Suche in Google Scholar

[18] Nagami, K.: Dimension Theory. Pure and Applied Mathematics, Vol. 37, Academic Press, New York-London, 1970.Suche in Google Scholar

[19] Nagata, J.: Modern Dimension Theory, Revised edition, Sigma Series in Pure Mathematics 2, Heldermann Verlag, Berlin, 1983.Suche in Google Scholar

[20] Pears, A. R.: Dimension Theory of General Spaces, Cambridge University Press, Cambridge, 1975.Suche in Google Scholar

[21] Predić, B.: Properties of compactness type of continuity triples, Mat. Vesnik 36(4) (1984), 351–356 (in Russian).Suche in Google Scholar

[22] Predić, B.: Separation properties of continuity triples, Mat. Vesnik 36(3) (1984), 244–248 (in Serbo-Croatian).Suche in Google Scholar

[23] Stong, R. E.: Finite topological spaces, Trans. Amer. Math. Soc. 123 (1966), 325–340.10.1090/S0002-9947-1966-0195042-2Suche in Google Scholar

Received: 2021-04-04
Accepted: 2021-05-10
Published Online: 2022-06-11
Published in Print: 2022-06-27

© 2022 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Regular Papers
  2. The poset of morphism-extension classes of countable graphs
  3. Characterization of monadic BL-algebras by state operators
  4. Comments on efficient batch verification test for digital signatures based on elliptic curves
  5. On necessary and sufficient conditions for the monogeneity of a certain class of polynomials
  6. An exponential Diophantine equation involving the sum or difference of powers of two Pell numbers
  7. Some results on certain types of Putcha semigroups
  8. Inner functions in QK spaces and multipliers
  9. Certain subclasses of meromorphic multivalent q-starlike and q-convex functions
  10. Algebraic dependences of meromorphic mappings into a projective space sharing few hyperplanes
  11. Unbounded oscillation criteria for fourth order neutral differential equations of non-canonical type
  12. Existence of radial solutions for a weighted p-biharmonic problem with navier boundary condition on the Heisenberg group
  13. Intuitionistic fuzzy Tribonacci I-convergent sequence spaces
  14. Lipschitz class functions and their general Fourier coefficients
  15. Spectra and fine spectra of the generalized upper difference operator with triple repetition Δ3ab on the Hahn sequence space
  16. A Topological sphere theorem for contact CR-warped product submanifolds of an odd-dimensional unit sphere
  17. An extended type I half-logistic family of distributions: Properties, applications and different method of estimations
  18. On the Unit-Chen distribution with associated quantile regression and applications
  19. A note on Lévy subordinators in cones of fuzzy sets in Banach spaces
  20. Uniformly asymptotic normality of the weighted estimator in nonparametric regression model with φ-mixing errors
  21. Upper bound for variance of finite mixtures of power exponential distributions
  22. The dimension Dind of finite topological T0-spaces
Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0056/pdf
Button zum nach oben scrollen