Startseite Mathematik Spectra and fine spectra of the generalized upper difference operator with triple repetition Δ3ab on the Hahn sequence space
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Spectra and fine spectra of the generalized upper difference operator with triple repetition Δ3ab on the Hahn sequence space

  • Nuh Durna EMAIL logo , Mohammad Mursaleen und Rabia Kılıç
Veröffentlicht/Copyright: 11. Juni 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The goal of this paper is to obtain the spectra and fine spectra of the matrix Δ3ab on the Hahn space. Also, we explore some ideas of how to study the problem for a general form of the matrix, namely, the matrix Δnab where the non-zero diagonals are the entries of a n-ary repetition sequence.

MSC 2010: Primary 47A10; 47B37

This study will be included in PhD Thesis of Rabia Kılıç


  1. (Communicated by Gregor Dolinar)

References

[1] Akhmedov, A. M.—Başar, F.: The fine spectra of the difference operator over the sequence space bvp, (1 ≤ p < ∞), Acta. Math. Sin. (Engl. Ser.) 23(10) (2007), 1757–1768.10.1007/s10114-005-0777-0Suche in Google Scholar

[2] Akhmedov, A. M.—El-Shabrawy, S. R.: On the fine spectrum of the operator Δv over the sequence space c and p, (1 < p < ∞), Appl. Math. Inf. Sci. 5(3) (2011), 635–654.Suche in Google Scholar

[3] Akhmedov, A. M.—El-Shabrawy, S. R.: Spectra and fine spectra of lower triangular double-bant matrices as operators on p, ( 1 ≤ p < ∞), Math. Slovaca 65(5) (2015), 1137–1152.10.1515/ms-2015-0078Suche in Google Scholar

[4] Altay, B.—Başar, F.: On the fine spectrum of the generalized difference operator B(r, s) over the sequence spaces c0 and c, Int. J. Math. Math. Sci. 18 (2005), 3005–3013.10.1155/IJMMS.2005.3005Suche in Google Scholar

[5] Altun, M.: Fine spectra of tridiagonal symmetric matrices, Int. J. Math. Math. Sci. 2011 (2011), Art. ID 161209.10.1155/2011/161209Suche in Google Scholar

[6] Appell, J.—De Pascale, E.—Vignoli, A.: Nonlinear Spectral Theory, Walter de Gruyter, Berlin, New York, 2004.10.1515/9783110199260Suche in Google Scholar

[7] Baliarsingh, P.—Dutta, S.: On a spectral classiffication of the operator Δνr over the sequence space c0, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 84(4) (2014), 555–561.10.1007/s40010-014-0164-2Suche in Google Scholar

[8] Başar, F.—Durna, N.—Yildirim, M.: Subdivisions of the spectra for genarilized difference operator over certain sequence spaces, Thai J. Math. 9(1) (2011), 285–295.10.1063/1.3525122Suche in Google Scholar

[9] Bilgiç, H.—Furkan, H.: On the fine spectrum of the generalized difference operator B(r, s) over the sequence spaces p and bvp, (1 < p < ∞), Nonlinear Anal. 68 (2008), 499–506.10.1016/j.na.2006.11.015Suche in Google Scholar

[10] Das, R.: On the spectrum and fine spectrum of the upper triangular matrix U(r1, r2; s1, s2) over the sequence space c0, Afr. Mat. 28 (2017), 841–849.10.1007/s13370-017-0486-8Suche in Google Scholar

[11] Durna, N.—Yildirim, M.: Subdivision of the spectra for factorable matrices on c0, Gazi Univ. J. Sci. 24(1) (2011), 45–49.Suche in Google Scholar

[12] Durna, N.: Subdivision of the spectra for the generalized upper triangular double-band matrices Δuv over the sequence spaces c0 and c, ADYU Sci. 6(1) (2016), 31–43.Suche in Google Scholar

[13] Durna, N.—Yildirim, M.— Kiliç, R.: Partition of the spectra for the generalized difference operator B(r, s) on the sequence space cs,, Cumhuriyet Science J. 39(1) (2018), 7–15.10.17776/csj.369069Suche in Google Scholar

[14] Durna, N.: Subdivision of spectra for some lower triangular double-band matrices as operators on c0, Ukrainian Mat. J. 70(7) (2018), 1052–1062.10.1007/s11253-018-1551-7Suche in Google Scholar

[15] Durna, N.: Spectra and fine spectra of the upper triangular band matrix U(a;0;b) over the sequence space c0, Miskolc Math. Notes 20(1) (2019), 209-223.10.18514/MMN.2019.2414Suche in Google Scholar

[16] Durna, N.— Kiliç, R.: Spectra and fine spectra for the upper triangular band matrix U(a0, a1, a2; b0, b1, b2) over the sequence space c0, Proyecciones J. Math. 38(1) (2019), 145–162.10.4067/S0716-09172019000100145Suche in Google Scholar

[17] Durna, N.: Spectra of the upper triangular band matrix U(r;0;s) on the Hahn space, Bull. Int. Math. Virtual Inst. 10(1) (2020), 9–17.10.18514/MMN.2019.2414Suche in Google Scholar

[18] Durna, N.: Spectra and fine spectra of the upper triangular band matrix U(a;0;b) on the Hahn sequence space, Math. Commun. 25 (2020), 49–66.Suche in Google Scholar

[19] Dundar, E.—Başar, F.: On the fine spectrum of the upper triangular double band matrix Δ+ on sequence space c0, Math. Commun. 18 (2013), 337–348.Suche in Google Scholar

[20] El-Shabrawy, S. R.: On the fine spectrum of the generalized difference operator Δa,b over the sequence space p, ( 1 < p < ∞), Appl. Math. Inf. Sci. 6(1) (2012), 11–18.Suche in Google Scholar

[21] El-Shabrawy, S. R.—Abu-Janah, S. H.: Spectra of the generalized difference operator on the sequence spaces and bv0 and h, Linear Multilinear Algebra 66(8) (2018), 1691–1708.10.1080/03081087.2017.1369492Suche in Google Scholar

[22] Fathi, J.—Lashkaripour, R.: On the fine spectrum of generalized upper double-bant matrices Δuv over the sequence space 1, Math. Vesnik. 65(1) (2013), 64–73.Suche in Google Scholar

[23] Goldberg, S.: Unbounded Linear Operators, McGraw Hill, New York, 1966.Suche in Google Scholar

[24] Hahn, H.: Über Folgen linearer Operationen, Monatsh. Math. Phys 32 (1922), 3–88.10.1007/978-3-7091-6601-7_6Suche in Google Scholar

[25] Karakaya, V.—Altun, M.: Fine spectra of upper triangular double-band matrices, J. Comput. Appl. Math. 23(4) (2010), 1387–1394.10.1016/j.cam.2010.02.014Suche in Google Scholar

[26] Meng, J.—Mei, L.: The matrix domain and the spectra of a generalized difference operator, J. Math. Anal. Appl. 470 (2019), 1095–1107.10.1016/j.jmaa.2018.10.051Suche in Google Scholar

[27] Mursaleen, M.—Yildirim, M.—Durna, N.: On the spectrum and Hilbert Schimidt properties of generalized Rhaly matrices, Commun. Fac. Sci. Univ. Ank. Ser. A 68(1) (2019), 712–723.10.31801/cfsuasmas.464177Suche in Google Scholar

[28] Mursaleen, M.—Başar, F.: Sequence Spaces: Topics in Modern Summability Theory, CRC Press, Taylor & Francis Group, 2020.10.1201/9781003015116Suche in Google Scholar

[29] Panigrahi, B. L.—Srivastava, P. D.: Spectrum and fine spectrum of generalized second order difference operator Δuv2 on sequence space c0, Thai. J. Math. 9(1) (2011), 57–74.10.1515/dema-2013-0404Suche in Google Scholar

[30] Sertić, J.—Kozak, D.—Scitovski, R.: LU-decomposition for solving sparse band matrix systems and its application in thin plate bending, Transactions of FAMENA. 32(2) (2008), 41–48.Suche in Google Scholar

[31] Stone, M. H.: Linear Transformations in Hilbert Space and their Applications to Analysis, New York, Amer. Math. Soc., 1932.10.1090/coll/015Suche in Google Scholar

[32] Taylor, A. E.—Halberg, Jr., C. J. A.: General theorems about a bounded linear operator and its conjugate, J. Reine Angew. Math. 198 (1957), 93–111.10.1515/crll.1957.198.93Suche in Google Scholar

[33] Tripathy, B. C.—Das, R.: Fine spectrum of the upper triangular matrix U(r, 0, 0, s) over the squence spaces c0 and c, Proyecciones J. Math. 37(1) (2018), 85–101.10.4067/S0716-09172018000100085Suche in Google Scholar

[34] Rao, K. C.: The Hahn sequence spaces I, Bull. Calcutta Math. Soc. 82 (1990), 72–78.Suche in Google Scholar

[35] Yeşilkayagil, M.—Kirişci, M.: On the fine spectrum of the forward difference operator on the Hahn space, General Mathematics Notes 33(2) (2016), 1–16.Suche in Google Scholar

[36] Yildirim, M.—Durna, N.: The spectrum and some subdivisions of the spectrum of discrete generalized Cesàro operators on p, (1 < p < ∞), J. Inequal. Appl. 2017(193) (2017), 1–13.10.1186/s13660-017-1464-2Suche in Google Scholar

[37] Yildirim, M.—Mursaleen, M.—Doğan, Ç.: The spectrum and fine spectrum of generalized Rhaly-Cesàro matrices on c0 and c, Oper. Matrices 12(4) (2018), 955–975.10.7153/oam-2018-12-58Suche in Google Scholar

[38] Yildirim, M. E.: The Spectrum and Fine Spectrum of q-Cesaro Matrices with 0 < q < 1 on c0, Numer. Func. Anal. Optim. 41(3) (2020), 361–377.10.1080/01630563.2019.1633666Suche in Google Scholar

Received: 2020-07-29
Accepted: 2021-05-14
Published Online: 2022-06-11
Published in Print: 2022-06-27

© 2022 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Regular Papers
  2. The poset of morphism-extension classes of countable graphs
  3. Characterization of monadic BL-algebras by state operators
  4. Comments on efficient batch verification test for digital signatures based on elliptic curves
  5. On necessary and sufficient conditions for the monogeneity of a certain class of polynomials
  6. An exponential Diophantine equation involving the sum or difference of powers of two Pell numbers
  7. Some results on certain types of Putcha semigroups
  8. Inner functions in QK spaces and multipliers
  9. Certain subclasses of meromorphic multivalent q-starlike and q-convex functions
  10. Algebraic dependences of meromorphic mappings into a projective space sharing few hyperplanes
  11. Unbounded oscillation criteria for fourth order neutral differential equations of non-canonical type
  12. Existence of radial solutions for a weighted p-biharmonic problem with navier boundary condition on the Heisenberg group
  13. Intuitionistic fuzzy Tribonacci I-convergent sequence spaces
  14. Lipschitz class functions and their general Fourier coefficients
  15. Spectra and fine spectra of the generalized upper difference operator with triple repetition Δ3ab on the Hahn sequence space
  16. A Topological sphere theorem for contact CR-warped product submanifolds of an odd-dimensional unit sphere
  17. An extended type I half-logistic family of distributions: Properties, applications and different method of estimations
  18. On the Unit-Chen distribution with associated quantile regression and applications
  19. A note on Lévy subordinators in cones of fuzzy sets in Banach spaces
  20. Uniformly asymptotic normality of the weighted estimator in nonparametric regression model with φ-mixing errors
  21. Upper bound for variance of finite mixtures of power exponential distributions
  22. The dimension Dind of finite topological T0-spaces
Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0049/pdf
Button zum nach oben scrollen