Home Mathematics On the exponential Diophantine equation Pxn + Pxn+1 + ⋯ + Pxn+k-1 = Pm
Article
Licensed
Unlicensed Requires Authentication

On the exponential Diophantine equation Pxn + Pxn+1 + ⋯ + Pxn+k-1 = Pm

  • Florian Luca , Euloge Tchammou and Alain Togbé EMAIL logo
Published/Copyright: December 10, 2020
Become an author with De Gruyter Brill

Abstract

In this paper, we find all the solutions of the title Diophantine equation in positive integers (m, n, k, x), where Pi is the ith term of the Pell sequence.

MSC 2010: 11B39; 11J86

F.L. was supported in part by the Number Theory Focus Area Grant of CoEMaSS at Wits (South Africa)

A.T. was supported in part by Purdue University Northwest


Acknowledgement

The authors thank the referees for the useful comments to improve the quality of this paper.

  1. (Communicated by István Gaál

References

[1] Baker, A.—Davenport, H.: The equations 3x2 − 2 = y2 and 8x2 − 7 = z2, Q. J. Math. 20(1) (1969), 129–137.10.1093/qmath/20.1.129Search in Google Scholar

[2] Behera, A.—Liptai, K.—Panda, G. K.—Szalay, L.: Balancing with Fibonacci powers, Fibonacci Quart. 49 (2011), 28–33.Search in Google Scholar

[3] Bertók, C.—Hajdu, L.—Pink, I.—Rábai, Z.: Linear combinations of prime powers in binary recurrence sequences, Int. J. Number Theory 13(2) (2017), 4–5.10.1142/S1793042117500166Search in Google Scholar

[4] Bravo, J. J.—Luca, F.: Coincidences in generalized Fibonacci recurrences, J. Number Theory 133(6) (2013), 2121–2137.10.1016/j.jnt.2012.11.006Search in Google Scholar

[5] Carmichael, R. D.: On the numerical factors of the arithmetic forms αn ± βn, Ann. Math. (2) 15(2) (1913), 30–70.10.2307/1967797Search in Google Scholar

[6] Dujella, A. and Pethő, A.: A generalization of a theorem of Baker and Davenport, Q. J. Math. Oxford Ser. 49(3) (1998), 291–306.10.1093/qmathj/49.3.291Search in Google Scholar

[7] Laurent, M.—Mignotte, M.—Nesterenko, Yu.: Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55(2) (1995), 285–321.10.1006/jnth.1995.1141Search in Google Scholar

[8] Luca, F.—Oyono, R.: Exponential Diophantine equation related to powers of two consecutive Fibonacci numbers, Proc. Japan Acad. 87 (2011), 45–50.10.3792/pjaa.87.45Search in Google Scholar

[9] Matveev, E. M.: An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II, Izv. Math. 64(6) (2000), 1217–1269.10.1070/IM2000v064n06ABEH000314Search in Google Scholar

[10] Murty, M. R.—Esmonde, J.: Problems in Algebraic Number Theory. 2nd ed., Grad. Texts in Math. 190, Springer-Verlag, New York, 2005.10.1007/978-3-642-87939-5_1Search in Google Scholar

[11] Pethö, A.: The Pell sequence contains only trivial perfects powers: Sets, graphs and numbers, Colloq. Math. Soc. Janós Bolyai 60 (1991), 561–568.Search in Google Scholar

[12] Rihane, S. E.—Faye, B.—Luca, F.—Togbé, A.: On the exponential Diophantine equationPnx+Pn+1x=Pm, Turkish J. Math. 43 (2019), 1640–1649.10.3906/mat-1810-130Search in Google Scholar

[13] Soydan, G.—Németh, L.—Szalay, L.: On the Diophantine equationj=1kjFjp=Fnq, Arch. Math. (Brno) 54 (2018), 177–188.10.5817/AM2018-3-177Search in Google Scholar

Received: 2020-01-03
Accepted: 2020-02-22
Published Online: 2020-12-10
Published in Print: 2020-12-16

© 2020 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0435/pdf
Scroll to top button