Startseite Mathematik Some properties of D-weak operator topology
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some properties of D-weak operator topology

  • Marcel Polakovič EMAIL logo
Veröffentlicht/Copyright: 23. Mai 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let 𝓖D(𝓗) denote the generalized effect algebra consisting of all positive linear operators defined on a dense linear subspace D of a Hilbert space 𝓗. The D-weak operator topology (introduced by other authors) on 𝓖D(𝓗) is investigated. The corresponding closure of the set of bounded elements of 𝓖D(𝓗) is the whole 𝓖D(𝓗). The closure of the set of all unbounded elements of 𝓖D(𝓗) is also the set 𝓖D(𝓗). If Q is arbitrary unbounded element of 𝓖D(𝓗), it determines an interval in 𝓖D(𝓗), consisting of all operators between 0 and Q (with the usual ordering of operators). If we take the set of all bounded elements of this interval, the closure of this set (in the D-weak operator topology) is just the original interval. Similarly, the corresponding closure of the set of all unbounded elements of the interval will again be the considered interval.

  1. Communicated by Mirko Navara

References

[1] Blank, J.—Exner, P.—Havlíček, M.: Hilbert Space Operators in Quantum Physics, 2nd edn., Springer, Berlin, 2008.Suche in Google Scholar

[2] Dalla Chiara, M. L.—Giuntini, R.—Greechie, R.: Reasoning in Quantum Theory, Springer, 2004.10.1007/978-94-017-0526-4Suche in Google Scholar

[3] Dvurečenskij, A.—Pulmannová, S.: New Trends in Quantum Structures, Kluwer, Dordrecht, 2000.10.1007/978-94-017-2422-7Suche in Google Scholar

[4] Foulis, D. J.—Bennett, M. K.: Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1331–1352.10.1007/BF02283036Suche in Google Scholar

[5] Paseka, J.: 𝓟𝓣-symmetry in (generalized) effect algebras, Int. J. Theor. Phys. 50 (2011), 1198–1205.10.1007/s10773-010-0594-9Suche in Google Scholar

[6] Paseka, J.—Riečanová, Z.: Considerable sets of linear operators in Hilbert spaces as operator generalized effect algebras, Found. Phys. 41 (2011), 1634–1647.10.1007/s10701-011-9573-0Suche in Google Scholar

[7] Piron, C.: Foundations of Quantum Physics, W.A. Benjamin Inc., 1976.10.1007/978-94-010-1440-3_7Suche in Google Scholar

[8] Polakovič, M.—Riečanová, Z.: Generalized effect algebras of positive operators densely defined on Hilbert spaces, Int. J. Theor. Phys. 50 (2011), 1167–1174.10.1007/s10773-010-0458-3Suche in Google Scholar

[9] Polakovič, M.: Generalized effect algebras of bounded positive operators defined on Hilbert spaces, Rep. Math. Phys. 68 (2011), 241–250.10.1016/S0034-4877(12)60007-XSuche in Google Scholar

[10] Polakovič, M.: D-weak operator topology and some its properties. In: Mathematical Physics ond Optimal Control (M. Zajac and I. Bock, eds.), 10th Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control, Kočovce, Slovakia, 2015, pp. 46–47.Suche in Google Scholar

[11] Pták, P.—Pulmannová, S.: Orthomodular Structures as Quantum Logics, Kluwer Academic Publishers, Dordrecht, Boston, London, 1991.Suche in Google Scholar

[12] Pulmannová, S.—Riečanová, Z.—Zajac, M.: Topological properties of operator generalized effect algebras, Rep. Math. Phys. 69 (2012), 311–320.10.1016/S0034-4877(13)60001-4Suche in Google Scholar

[13] Reed, M.—Simon, B.: Methods of Modern Mathematical Physics, I. Functional Analysis, Academic Press, New York, London, 1972.Suche in Google Scholar

[14] Riečanová, Z.—Zajac, M.—Pulmannová, S.: Effect algebras of positive linear operators densely defined on Hilbert spaces, Rep. Math. Phys. 68 (2011), 261–270.10.1016/S0034-4877(12)60009-3Suche in Google Scholar

[15] Riečanová, Z.—Zajac, M.: Hilbert space effectrepresentations of effect algebras, Rep. Math. Phys. 70 (2012), 283–290.10.1016/S0034-4877(12)60046-9Suche in Google Scholar

[16] Riečanová, Z.: Subalgebras, intervals and central elements of generalized effect algebras, Int. J. Theor. Phys. 28 (1999), 3209–3220.10.1023/A:1026682215765Suche in Google Scholar

Received: 2019-09-13
Accepted: 2019-11-13
Published Online: 2020-05-23
Published in Print: 2020-06-25

© 2020 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Regular papers
  2. Recurrences for the genus polynomials of linear sequences of graphs
  3. The existence of states on EQ-algebras
  4. On sidon sequences of farey sequences, square roots and reciprocals
  5. Repdigits as sums of three balancing numbers
  6. Lipschitz one sets modulo sets of measure zero
  7. Refinement of fejér inequality for convex and co-ordinated convex functions
  8. An extension of q-starlike and q-convex error functions endowed with the trigonometric polynomials
  9. Coefficients problems for families of holomorphic functions related to hyperbola
  10. Triebel-Lizorkin capacity and hausdorff measure in metric spaces
  11. The method of upper and lower solutions for integral boundary value problem of semilinear fractional differential equations with non-instantaneous impulses
  12. On a system of three difference equations of higher order solved in terms of Lucas and Fibonacci numbers
  13. Density of summable subsequences of a sequence and its applications
  14. Rough weighted 𝓘-limit points and weighted 𝓘-cluster points in θ-metric space
  15. A note on cosine series with coefficients of generalized bounded variation
  16. Some geometric properties of the non-Newtonian sequence spaces lp(N)
  17. On sequence spaces defined by the domain of a regular tribonacci matrix
  18. Jointly separating maps between vector-valued function spaces
  19. Some fixed point theorems for multi-valued mappings in graphical metric spaces
  20. Monotone transformations on the cone of all positive semidefinite real matrices
  21. Locally defined operators in the space of Ck,ω-functions
  22. Some properties of D-weak operator topology
  23. Estimating the distribution of a stochastic sum of IID random variables
  24. An internal characterization of complete regularity
Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0388/pdf
Button zum nach oben scrollen