Startseite Triebel-Lizorkin capacity and hausdorff measure in metric spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Triebel-Lizorkin capacity and hausdorff measure in metric spaces

  • Nijjwal Karak EMAIL logo
Veröffentlicht/Copyright: 23. Mai 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We provide a upper bound for Triebel-Lizorkin capacity in metric settings in terms of Hausdorff measure. On the other hand, we also prove that the sets with zero capacity have generalized Hausdorff h-measure zero for a suitable gauge function h.

MSC 2010: 31E05; 31B15

This work was supported by OP RDE project no. CZ.02.2.69/0.0/0.0/16 027/0008495, International Mobility of Researcher at Charles University.


  1. Communicated by David Buhagiar

References

[1] Björn, J.—Onninen, J.:. Orlicz capacities and Hausdorff measures on metric spaces, Math. Z. 251(1) (2005), 131–146.10.1007/s00209-005-0792-ySuche in Google Scholar

[2] Costea, Ş.: Besov capacity and Hausdorff measures in metric measure spaces, Publ. Mat. 53(1) (2009), 141–178.10.5565/PUBLMAT_53109_07Suche in Google Scholar

[3] Federer, H.: Geometric Measure Theory. Grundlehren Math. Wiss. 153, Springer-Verlag New York Inc., New York, 1969.Suche in Google Scholar

[4] Heikkinen, T.—Ihnatsyeva, L.—Tuominen, H.: Measure density and extension of Besov and Triebel-Lizorkin functions, J. Fourier Anal. Appl. 22(2) (2016), 334–382.10.1007/s00041-015-9419-9Suche in Google Scholar

[5] Heikkinen, T.—Koskela, P.—Tuominen, H.:. Approximation and quasicontinuity of Besov and Triebel-Lizorkin functions, Trans. Amer. Math. Soc. 369(5) (2017), 3547–3573.10.1090/tran/6886Suche in Google Scholar

[6] Karak, N.:. Generalized Lebesgue points for Sobolev functions, Czechoslovak Math. J. 67(1) (2017), 143–150.10.21136/CMJ.2017.0405-15Suche in Google Scholar

[7] Karak, N.—Koskela, P.: Capacities and Hausdorff measures on metric spaces Rev. Mat. Complut. 28(3) (2015), 733–740.10.1007/s13163-015-0174-xSuche in Google Scholar

[8] Kinnunen, J.—Korte, R.—Shanmugalingam, N.—Tuominen H.: Lebesgue points and capacities via the boxing inequality in metric spaces, Indiana Univ. Math. J. 57(1) (2008), 401–430.10.1512/iumj.2008.57.3168Suche in Google Scholar

[9] Kinnunen, J.—Martio, O.: The Sobolev capacity on metric spaces. Ann. Acad. Sci. Fenn. Math. 21(2) (1996), 367–382.Suche in Google Scholar

[10] Koskela, P.—Yang, D.—Zhou Y.: Pointwise characterizations of Besov and Triebel-Lizorkin spaces and quasiconformal mappings, Adv. Math. 226(4) (2011), 3579–3621.10.1016/j.aim.2010.10.020Suche in Google Scholar

[11] Netrusov, Yu. V.: Estimates of capacities associated with Besov spaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 201(20) (1992), 124–156.10.1007/BF02366035Suche in Google Scholar

[12] Nuutinen J.: The Besov capacity in metric spaces, Ann. Polon. Math. 117(1) (2016), 59–78.10.4064/ap3843-4-2016Suche in Google Scholar

[13] Poelhuis, J.—Torchinsky, A.: Medians, continuity, and vanishing oscillation, Studia Math. 213(3) (2012), 227–242.10.4064/sm213-3-3Suche in Google Scholar

[14] Triebel H.: Theory of Function Spaces. Monogr. Math. 78, Birkhäuser Verlag, Basel, 1983.10.1007/978-3-0346-0416-1Suche in Google Scholar

[15] Zhou, Y.: Fractional Sobolev extension and imbedding, Trans. Amer. Math. Soc. 367(2) (2015), 959–979.10.1090/S0002-9947-2014-06088-1Suche in Google Scholar

[16] Ziemer W. P.: Weakly Differentiable Functions. Grad. Texts in Math. 120, Springer-Verlag, New York, 1989.10.1007/978-1-4612-1015-3Suche in Google Scholar

Received: 2019-04-27
Accepted: 2019-07-29
Published Online: 2020-05-23
Published in Print: 2020-06-25

© 2020 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Regular papers
  2. Recurrences for the genus polynomials of linear sequences of graphs
  3. The existence of states on EQ-algebras
  4. On sidon sequences of farey sequences, square roots and reciprocals
  5. Repdigits as sums of three balancing numbers
  6. Lipschitz one sets modulo sets of measure zero
  7. Refinement of fejér inequality for convex and co-ordinated convex functions
  8. An extension of q-starlike and q-convex error functions endowed with the trigonometric polynomials
  9. Coefficients problems for families of holomorphic functions related to hyperbola
  10. Triebel-Lizorkin capacity and hausdorff measure in metric spaces
  11. The method of upper and lower solutions for integral boundary value problem of semilinear fractional differential equations with non-instantaneous impulses
  12. On a system of three difference equations of higher order solved in terms of Lucas and Fibonacci numbers
  13. Density of summable subsequences of a sequence and its applications
  14. Rough weighted 𝓘-limit points and weighted 𝓘-cluster points in θ-metric space
  15. A note on cosine series with coefficients of generalized bounded variation
  16. Some geometric properties of the non-Newtonian sequence spaces lp(N)
  17. On sequence spaces defined by the domain of a regular tribonacci matrix
  18. Jointly separating maps between vector-valued function spaces
  19. Some fixed point theorems for multi-valued mappings in graphical metric spaces
  20. Monotone transformations on the cone of all positive semidefinite real matrices
  21. Locally defined operators in the space of Ck,ω-functions
  22. Some properties of D-weak operator topology
  23. Estimating the distribution of a stochastic sum of IID random variables
  24. An internal characterization of complete regularity
Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0376/html
Button zum nach oben scrollen