Startseite Rough weighted 𝓘-limit points and weighted 𝓘-cluster points in θ-metric space
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Rough weighted 𝓘-limit points and weighted 𝓘-cluster points in θ-metric space

  • Sanjoy Ghosal EMAIL logo und Avishek Ghosh
Veröffentlicht/Copyright: 23. Mai 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In 2018, Das et al. [Characterization of rough weighted statistical statistical limit set, Math. Slovaca 68(4) (2018), 881–896] (or, Ghosal et al. [Effects on rough 𝓘-lacunary statistical convergence to induce the weighted sequence, Filomat 32(10) (2018), 3557–3568]) established the result: The diameter of rough weighted statistical limit set (or, rough weighted 𝓘-lacunary limit set) of a sequence x = {xn}n∈ℕ is 2rlim infnAtn if the weighted sequence {tn}n∈ℕ is statistically bounded (or, self weighted 𝓘-lacunary statistically bounded), where A = {k ∈ ℕ : tk < M} and M is a positive real number such that natural density (or, self weighted 𝓘-lacunary density) of A is 1 respectively. Generally this set has no smaller bound other than 2rlim infnAtn. We concentrate on investigation that whether in a θ-metric space above mentioned result is satisfied for rough weighted 𝓘-limit set or not? Answer is no. In this paper we establish infinite as well as unbounded θ-metric space (which has not been done so far) by utilizing some non-trivial examples. In addition we introduce and investigate some problems concerning the sets of rough weighted 𝓘-limit points and weighted 𝓘-cluster points in θ-metric space and formalize how these sets could deviate from the existing basic results.


The research of the second author is supported by Jadavpur University, Kolkata-700032, West Bengal, India



,


  1. Communicated by Tomasz Natkaniec

Acknowledgement

We are thankful to the Editor and Referees for their careful reading of the paper and several valuable suggestions which improved the quality and presentation of the paper.

References

[1] Aktuğlu, H.: Korovkin type approximation theorems proved viaαβ-statistical convergence, J. Comput. Appl. Math. 259 (2014), 174–181.10.1016/j.cam.2013.05.012Suche in Google Scholar

[2] Arslan, M.—Dündar, E.: Rough convergence in 2-normed spaces, Bull. Math. Anal. Appl. 10(3) (2018), 1–9.Suche in Google Scholar

[3] Aytar, S.: The rough limit set and the core of a real sequence, Numer. Funct. Anal. Optim. 29(3–4) (2008), 283–290.10.1080/01630560802001056Suche in Google Scholar

[4] Aytar, S.: Rough statistical convergence, Numer. Funct. Anal. Optim. 29(3–4) (2008), 291–303.10.1080/01630560802001064Suche in Google Scholar

[5] Chanda, A.—Damjanovič, B.— Dey, L. K.: Fixed point results onθ-metric spaces via simulation functions, Filomat 31(11) (2017), 3365–3375.10.2298/FIL1711365CSuche in Google Scholar

[6] Cinar, M.—Et, M.: Generalized weighted statistical convergence of double sequences and applications, Filomat 30(3) (2016), 753–762.10.2298/FIL1603753CSuche in Google Scholar

[7] Činčura, J.—Šalát, T.—Sleziak, M.—Toma, V.: Sets of statistical cluster points and 𝓘-cluster points, Real Anal. Exchange 30 (2004/2005), 565–580.10.14321/realanalexch.30.2.0565Suche in Google Scholar

[8] Connor, J.—Kline, J.: On statistical limit points and the consistency of statistical convergence, J. Math. Anal. Appl. 197 (1996), 392–399.10.1006/jmaa.1996.0027Suche in Google Scholar

[9] Das, P.: Some further results on ideal convergence in topological spaces, Topology Appl. 159 (2012), 2621–2626.10.1016/j.topol.2012.04.007Suche in Google Scholar

[10] Das, P.—Ghosal, S.—Ghosh, A.—Som, S.: Characterization of rough weighted statistical statistical limit set, Math. Slovaca 68(4) (2018), 881–896.10.1515/ms-2017-0152Suche in Google Scholar

[11] Das, P.—Ghosal, S.—Som, S.: Different types of quasi weightedαβ-statistical convergence in probability, Filomat 35(5) (2017), 1463–1473.10.2298/FIL1705463DSuche in Google Scholar

[12] Das, P.—Kostyrko, P.—Wilczyński, W.—Malik, P.: 𝓘 and 𝓘*-convergence of double sequences, Math. Slovaca 58(5) (2008), 605–620.10.2478/s12175-008-0096-xSuche in Google Scholar

[13] Di Maio, G.— Kočinac, Li. D. R.: Statistical convergence in topology, Topology Appl. 156 (2008), 28–45.10.1016/j.topol.2008.01.015Suche in Google Scholar

[14] Dündar, E.: On rough 𝓘2-convergence of double sequences, Numer. Funct. Anal. Optim. 37(4) (2016), 480–491.10.1080/01630563.2015.1136326Suche in Google Scholar

[15] Dündar, E.—Çakan, C.: Rough 𝓘-convergence, Demonstratio Math. 47 (3) (2014), 638–651.10.2478/dema-2014-0051Suche in Google Scholar

[16] Dündar, E.—Çakan, C.: Rough convergence of double sequences, Gulf J. Math. 2 (1) (2014), 45–51.10.1080/01630563.2015.1136326Suche in Google Scholar

[17] Fridy, J. A.: On statistical convergence, Analysis 5 (1985), 301–313.10.1524/anly.1985.5.4.301Suche in Google Scholar

[18] Ghosal, S.: Generalized weighted random convergence in probability, Appl. Math. Comput. 249 (2014), 502–509.10.1016/j.amc.2014.10.056Suche in Google Scholar

[19] Ghosal, S.—Banerjee, M.: Effects on rough 𝓘-lacunary statistical convergence to induce the weighted sequence, Filomat 32(10) (2018), 3557–3568.10.2298/FIL1810557GSuche in Google Scholar

[20] Ghosal, S.—Ghosh, A.: When deviation happens between rough statistical convergence and rough weighted statistical convergence, Math. Slovaca 69(4) (2019), 871–890.10.1515/ms-2017-0275Suche in Google Scholar

[21] Ghosal, S.—Som, S.: Different behaviors of rough weighted statistical limit set under unbounded moduli, Filomat 32(7) (2018), 2583–2600.10.2298/FIL1807583GSuche in Google Scholar

[22] Karakaya, V.—Chishti, T. A.: Weighted statistical convergence, Iran. J. Sci. Technol. Trans. A Sci. 33(A3) (2009), 219–223.Suche in Google Scholar

[23] Khojasteh, F.—Karapinar, E.—Radenovič, S.: θ-metric space: A generalization, Math. Probl. Eng. (2013), Art. ID 504609.10.1155/2013/504609Suche in Google Scholar

[24] Kişi, Ö.—Dündar, E.: Rough 𝓘2-lacunary statistical convergence of double sequences, J. Inequal. Appl. 2018:230, https://doi.org/10.1186/s13660-018-1831-7.10.1186/s13660-018-1831-7Suche in Google Scholar PubMed PubMed Central

[25] Kostyrko, P.—Mačaj, M.—Šalát, T.—Strauch, O.: On statistical limit points, Proc. Amer. Math. Soc. 129(9) (2001), 2647–2654.10.1090/S0002-9939-00-05891-3Suche in Google Scholar

[26] Kostyrko, P.–Šalát, T.—Strauch, O.: 𝓘-convergence, Real Anal. Exchange 26(2) (2000/2001), 669–686.10.2307/44154069Suche in Google Scholar

[27] Kostyrko, P.–Mačaj, M.—Šalát, T.—Sleziak, M.: 𝓘-convergence and extremal limit points, Math. Slovaca 55(4) (2005), 443–464.Suche in Google Scholar

[28] Lahiri, B. K.—Das, P.: 𝓘 and 𝓘*-convergence in topological space, Math. Bohemica 130(2) (2005), 153–160.10.21136/MB.2005.134133Suche in Google Scholar

[29] Mursaleen, M.—Karakaya, V.—Erturk, M.—Gursoy, F.: Weighted statistical convergence and its application to Korovkin type approximation theorem, Appl. Math. Comput. 218(18) (2012), 9132–9137.10.1016/j.amc.2012.02.068Suche in Google Scholar

[30] Ölmez, Ö.—Aytar, S.: The relation bewteen rough Wijsman convergence and asymptotic cones, Turkish J. Math. 40 (2016), 1349–1355.10.3906/mat-1508-10Suche in Google Scholar

[31] Pal, S. K.—Chandra, D.—Dutta, S.: Rough ideal convergence, Hacet. J. Math. Stat. 42(6) (2013), 633–640.Suche in Google Scholar

[32] Pehlivan, S.—Güncan, A.—Mamedov, M. A.: Statistical cluster points of sequences of finite dimensional space, Czechoslovak Math. J. 54 (2004), 95–102.10.1023/B:CMAJ.0000027250.19041.72Suche in Google Scholar

[33] Pehlivan, S.—Mamedov, M.: Statistical cluster points and turnpike, Optimization 48(1) (2000), 93–106.10.1080/02331930008844495Suche in Google Scholar

[34] Phu, H. X.: Rough convergence in normed linear spaces, Numer. Funct. Anal. Optim. 22(1–2) (2001), 199–222.10.1081/NFA-100103794Suche in Google Scholar

[35] Phu, H. X.: Rough convergence in infinite dimensional normed space, Numer. Funct. Anal. Optimiz. 24(3–4) (2003), 285–301.10.1081/NFA-120022923Suche in Google Scholar

[36] Šalát, T.: On statistically convergent sequences of real numbers, Math. Slovaca 30(2) (1980), 139–150.Suche in Google Scholar

Received: 2019-04-03
Accepted: 2019-10-22
Published Online: 2020-05-23
Published in Print: 2020-06-25

© 2020 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Regular papers
  2. Recurrences for the genus polynomials of linear sequences of graphs
  3. The existence of states on EQ-algebras
  4. On sidon sequences of farey sequences, square roots and reciprocals
  5. Repdigits as sums of three balancing numbers
  6. Lipschitz one sets modulo sets of measure zero
  7. Refinement of fejér inequality for convex and co-ordinated convex functions
  8. An extension of q-starlike and q-convex error functions endowed with the trigonometric polynomials
  9. Coefficients problems for families of holomorphic functions related to hyperbola
  10. Triebel-Lizorkin capacity and hausdorff measure in metric spaces
  11. The method of upper and lower solutions for integral boundary value problem of semilinear fractional differential equations with non-instantaneous impulses
  12. On a system of three difference equations of higher order solved in terms of Lucas and Fibonacci numbers
  13. Density of summable subsequences of a sequence and its applications
  14. Rough weighted 𝓘-limit points and weighted 𝓘-cluster points in θ-metric space
  15. A note on cosine series with coefficients of generalized bounded variation
  16. Some geometric properties of the non-Newtonian sequence spaces lp(N)
  17. On sequence spaces defined by the domain of a regular tribonacci matrix
  18. Jointly separating maps between vector-valued function spaces
  19. Some fixed point theorems for multi-valued mappings in graphical metric spaces
  20. Monotone transformations on the cone of all positive semidefinite real matrices
  21. Locally defined operators in the space of Ck,ω-functions
  22. Some properties of D-weak operator topology
  23. Estimating the distribution of a stochastic sum of IID random variables
  24. An internal characterization of complete regularity
Heruntergeladen am 31.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0380/html?lang=de
Button zum nach oben scrollen