Home Pointwise multipliers between weighted copson and cesàro function spaces
Article
Licensed
Unlicensed Requires Authentication

Pointwise multipliers between weighted copson and cesàro function spaces

  • Amiran Gogatishvili EMAIL logo , Rza Ch. Mustafayev and Tugce Ünver
Published/Copyright: December 22, 2019
Become an author with De Gruyter Brill

Abstract

In this paper the solution of the pointwise multiplier problem between weighted Copson function spaces Copp1,q1(u1, v1) and weighted Cesàro function spaces Cesp2,q2(u2, v2) is presented, where p1, p2, q1, q2 ∈ (0, ∞), p2q2 and u1, u2, v1, v2 are weights on (0, ∞).

  1. Communicated by Marcus Waurick

Acknowledgement

We thank the anonymous referee for his / her remarks, which have improved the final version of this paper.

References

[1] Askey, R.—Boas, R. P., Jr.: Some integrability theorems for power series with positive coefficients. In: Mathematical Essays Dedicated to A. J. Macintyre, Ohio Univ. Press, Athens, Ohio, 1970, pp. 23–32.Search in Google Scholar

[2] Astashkin, S. V.—Maligranda, L.: Structure of Cesàro function spaces, Indag. Math. (N.S.) 20(3) (2009), 329–379.10.1016/S0019-3577(10)00002-9Search in Google Scholar

[3] Astashkin, S. V.—Maligranda, L.: Structure of Cesàro function spaces: a survey, Banach Center Publ. 102 (2014), 13–40.10.4064/bc102-0-1Search in Google Scholar

[4] Bennett, G.: Factorizing the Classical Inequalities. Mem. Amer. Math. Soc. 120, 1996.10.1090/memo/0576Search in Google Scholar

[5] Boas, R. P., Jr.: Integrability Theorems for Trigonometric Transforms. Ergeb. Math. Grenzgeb. (3) 38, Springer-Verlag New York Inc., New York, 1967.10.1007/978-3-642-87108-5_1Search in Google Scholar

[6] Boas, R. P., Jr.: Some integral inequalities related to Hardy’s inequality, J. Analyse Math. 23 (1970), 53–63.10.1007/BF02795488Search in Google Scholar

[7] Gogatishvili, A.—Kufner, A.—Persson, L.-E.: Some new scales of weight characterizations of the classBp, Acta Math. Hungar. 123 (2009), 365–377.10.1007/s10474-009-8132-zSearch in Google Scholar

[8] Gogatishvili, A.—Mustafayev, R. Ch.—Ünver, T.: Embeddings between weighted Copson and Cesàro function spaces, Czechoslovak Math. J. 67 (2017), 1105–1132.10.21136/CMJ.2017.0424-16Search in Google Scholar

[9] Gogatishvili, A.—Persson, L.-E.—Stepanov, V. D.—Wall, P.: Some scales of equivalent conditions to characterize the Stieltjes inequality: the caseq < p, Math. Nachr. 287 (2014), 242–253.10.1002/mana.201200118Search in Google Scholar

[10] Gogatishvili, A.—Pick, L.: Discretization and anti-discretization of rearrangement-invariant norms, Publ. Mat. 47 (2003), 311–358.10.5565/PUBLMAT_47203_02Search in Google Scholar

[11] Gogatishvili, A.—Pick, L.: Embeddings and duality theorems for weak classical Lorentz spaces, Canad. Math. Bull. 49 (2006), 82–95.10.4153/CMB-2006-008-3Search in Google Scholar

[12] Goldman, M. L.—Heinig, H. P.—Stepanov, V. D.: On the principle of duality in Lorentz spaces, Canad. J. Math. 48 (1996), 959–979.10.4153/CJM-1996-050-3Search in Google Scholar

[13] Grosse-Erdmann, K.-G.: The blocking technique, weighted mean operators and Hardy’s inequality. Lecture Notes in Math. 1679, Springer-Verlag, Berlin, 1998.Search in Google Scholar

[14] Jagers, A. A.: A note on Cesàro sequence spaces, Nieuw Arch. Wisk. (3) 22 (1974), 113–124.Search in Google Scholar

[15] Kamińska, A.—Kubiak, D.: On the dual of Cesàro function space, Nonlinear Anal. 75 (2012), 2760–2773.10.1016/j.na.2011.11.019Search in Google Scholar

[16] Kolwicz, P.—Leśnik, K.—Maligranda, L.: Pointwise multipliers of Calderón-Lozanovskiĭ spaces, Math. Nachr. 286 (2013), 876–907.10.1002/mana.201100156Search in Google Scholar

[17] Kolwicz, P.—Leśnik, K.—Maligranda, L.: Symmetrization, factorization and arithmetic of quasi-Banach function spaces, J. Math. Anal. Appl. 470 (2019), 1136–1166.10.1016/j.jmaa.2018.10.054Search in Google Scholar

[18] Leibowitz, G. M.: A note on the Cesàro sequence spaces, Tamkang J. Math. 2 (1971), 151–157.Search in Google Scholar

[19] Programma van Jaarlijkse Prijsvragen (Annual Problem Section). Nieuw Arch. Wiskd. 16 (1968), 47–51.Search in Google Scholar

[20] Shiue, J.-S.: A note on Cesàro function space, Tamkang J. Math. 1 (1970), 91–95.Search in Google Scholar

[21] Sy, P. W.—Zhang, W. Y.—Lee, P. Y.: The dual of Cesàro function spaces, Glas. Mat. Ser. III, 22 (1987), 103–112.Search in Google Scholar

Received: 2019-02-19
Accepted: 2019-05-24
Published Online: 2019-12-22
Published in Print: 2019-12-18

© 2019 Mathematical Institute Slovak Academy of Sciences

Articles in the same Issue

  1. Regular papers
  2. RNDr. Kvetoslava Dvořáková passed away
  3. On the Riesz structures of a lattice ordered abelian group
  4. On Diophantine equation x4 + y4 = n(u4 + v4)
  5. On a Waring-Goldbach problem involving squares and cubes
  6. D(n)-quadruples in the ring of integers of ℚ(√2, √3)
  7. Geometry of ℙ2 blown up at seven points
  8. Preservation of Rees exact sequences
  9. Pointwise multipliers between weighted copson and cesàro function spaces
  10. Some properties associated to a certain class of starlike functions
  11. Asymptotic properties of noncanonical third order differential equations
  12. Existence and regularity results for unilateral problems with degenerate coercivity
  13. Direct and inverse approximation theorems of functions in the Orlicz type spaces 𝓢M
  14. Some approximation properties of a kind of (p, q)-Phillips operators
  15. Best proximity points for a new type of set-valued mappings
  16. Weakly demicompact linear operators and axiomatic measures of weak noncompactness
  17. Fixed point results for F𝓡-generalized contractive mappings in partial metric spaces
  18. Einstein-Weyl structures on trans-Sasakian manifolds
  19. Characterizations of linear Weingarten space-like hypersurface in a locally symmetric Lorentz space
  20. ∗-Ricci solitons and gradient almost ∗-Ricci solitons on Kenmotsu manifolds
  21. Uncorrelatedness sets of discrete random variables via Vandermonde-type determinants
  22. A note on the consistency of wavelet estimators in nonparametric regression model under widely orthant dependent random errors
  23. On adaptivity of wavelet thresholding estimators with negatively super-additive dependent noise
  24. Generalized Meir-Keeler type contractions and discontinuity at fixed point II
Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0310/pdf
Scroll to top button