Home Characterizations of linear Weingarten space-like hypersurface in a locally symmetric Lorentz space
Article
Licensed
Unlicensed Requires Authentication

Characterizations of linear Weingarten space-like hypersurface in a locally symmetric Lorentz space

  • Rong Mi EMAIL logo
Published/Copyright: December 22, 2019
Become an author with De Gruyter Brill

Abstract

Our purpose in this paper is to study complete linear Weingarten space-like hypersurface immersed in locally symmetric Lorentz space obeying some curvature conditions. Our approach is based on the use of a Simons type formula related to an appropriated Cheng-Yau modified operator jointly with some generalized maximum principles, we obtain that such a space-like hypersurface must be either totally umbilical or isometric to an isoparametric hypersurface with two distinct principal curvatures, one of which is simple. This result corresponds to a natural improvement of previous ones due to de Lima, dos Santos, Velásquez [On the umbilicity of complete linear Weingarten spacelike hypersurfaces immersed in a locally symmetric Lorentz space, São Paulo J. Math. Sci. 11 (2017), 456–470] and Alías, de Lima, dos Santos [New characterizations of linear Weingarten spacelike hypersurfaces in de Sitter space, Pacific J. Math. 292 (2018), 1–19].

MSC 2010: Primary 53C50

This work was supported by the National Natural Science Foundation of China (11761061).


  1. Communicated by Július Korbaš

Acknowledgement

The author would like to thank the referee for his kind advice to improve this paper.

References

[1] Alías, L. J.—De Lima, H. F.—Dos Santos, F. R.: New characterizations of linear Weingarten spacelike hypersurfaces in de Sitter space, Pacific J. Math. 292 (2018), 1–19.10.2140/pjm.2018.292.1Search in Google Scholar

[2] ALíAS, L. J.—Impera, D.—Rigoli, M.: Hypersurfaces of constant higher order mean curvature in warped space, J. Differential Geom. 365 (2013), 591–621.Search in Google Scholar

[3] Baek, J. O.—Cheng, Q. M.—Suh, Y. J.: Complete space-like hypersurfaces in locally symmetric Lorentz spaces, J. Geom. Phys. 49 (2004), 231–247.10.1016/S0393-0440(03)00090-1Search in Google Scholar

[4] Brasil, A. JR.—Colares, A. G.: On complete spacelike hypersurfaces with constant scalar curvature in the de Sitter space, An. Acad. Brasil. Ciênc. 72 (2000), 445–452.10.1590/S0001-37652000000400001Search in Google Scholar

[5] Brasil, A. JR.—Colares, A. G.—Palmas, O.: A gap theorem for complete constant scalar curvature hypersurfaces in the de Sitter space, J. Geom. Phys. 57 (2007), 1567–1568.10.1016/S0393-0440(00)00046-2Search in Google Scholar

[6] Calabi, E.: Examples of Bernstein problems for some nonlinear equations, Proc. Symp. Pure Math. 15 (1970), 223–230.10.1090/pspum/015/0264210Search in Google Scholar

[7] Camargo, F. E. C.—Chaves, R. M. B.—Sousa JR. L. A. M.: Rigidity theorems for complete spacelike hypersurfaces with constant scalar curvature in the de Sitter space, Differential Geom. Appl. 26 (2008), 592–599.10.1016/j.difgeo.2008.04.020Search in Google Scholar

[8] Cheng, S. Y.—Yau, S. T.: Maximal spacelike hypersurfaces in the Lorentz-Minkowski space, Ann. Math. 104 (1976), 407–419.10.2307/1970963Search in Google Scholar

[9] Cheng, Q. M.—Ishikawa, S.: Spacelike hypersurface with constant scalar curvature, Manuscripta Math. 14 (1998), 499–505.10.1007/s002290050043Search in Google Scholar

[10] Cheng, S. Y.—Yau, S. T.: Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), 195–204.10.1007/BF01425237Search in Google Scholar

[11] Choi, S. M.—Lyu, S. M.—Suh, Y. J.: Complete space-like hypersurfaces in a Lorentz manifold, Math. J. Toyama Univ. 22 (1999), 53–76.Search in Google Scholar

[12] De Lima, H. F.—Dos Santos, F. R.—Velásquez, M. A. L.: On the umbilicity of complete linear Weingarten spacelike hypersurfaces immersed in a locally symmetric Lorentz space, São Paulo J. Math. Sci. 11 (2017), 456–470.10.1007/s40863-017-0075-7Search in Google Scholar

[13] De Lima, H. F.—De Lima, J. R.: Characterization of linear Weingarten spacelike hypersurfaces in Einstein spacetimes, Glasgow Math. J. 55 (2013), 567–579.10.1017/S0017089512000754Search in Google Scholar

[14] De Lima, H. F.—De Lima, J. R.: Complete linear Weingarten spacelike hypersurfaces immersed in a locally symmetric Lorentz space, Results. Math. 63 (2013), 865–876.10.1007/s00025-012-0237-ySearch in Google Scholar

[15] De Lima, H. F.—De Lima, J. R.—Gomes, J. N.—Velásquez, M. A. L.: On the complete spacelike hypersurfaces immersed with two distinct principal curvatures in a locally symmetric Lorentz space, Collect. Math. 67 (2016), 379–397.10.1007/s13348-015-0145-zSearch in Google Scholar

[16] Goddard, A. J.: Some remarks on the existence of spacelike hypersurfaces of constant mean curvature, Math. Proc. Cambridge Philos. Soc. 82 (1977), 489–495.10.1017/S0305004100054153Search in Google Scholar

[17] Gomes, J. N.—De Lima, H. F.—Dos Santos, F. R.—Velásquez, M. A. L.: On the complete linear Weingarten spacelike hypersurfaces with two distinct principal curvatures in Lorentzian space forms, J. Math. Anal. Appl. 418 (2014), 248–263.10.1016/j.jmaa.2014.03.090Search in Google Scholar

[18] Han, Y. B.—Feng, S. X.—Yu, L. J.: On complete spacelike hypersurfaces with R = aH + bin locally symmetric Lorentz spaces, Arch. Math. 47 (2011), 151–161.Search in Google Scholar

[19] Hu, Z. J.—Scherfner, M.—Zhai, S. J.: On spacelike hypersurfaces with constant scalar curvature in the de Sitter space, Differential Geom. Appl. 6 (2007), 594–611.10.1016/j.difgeo.2007.06.008Search in Google Scholar

[20] Liu, J. C.—Sun, Z. Y.: On spacelike hypersurfaces with constant scalar curvature in locally symmetric Lorentz spaces, J. Math. Anal. Appl. 364 (2010), 195–203.10.1016/j.jmaa.2009.10.029Search in Google Scholar

[21] Montiel, S.: An integral inequality for compact spacelike hypersurfaces in the de Sitter space and applications to the case of constant mean curvature, Indiana Univ. Math. J. 37 (1988), 909–917.10.1512/iumj.1988.37.37045Search in Google Scholar

[22] Montiel, S.: A characterization of hyperbolic cylinders in the de Sitter space, Tôhoku Math. J. 48 (1996), 23–31.10.2748/tmj/1178225410Search in Google Scholar

[23] Nishikawa, S.: On maximal spacelike hypersurfaces in a Lorentzian manifold, Nagoya Math. J. 95 (1984), 117–124.10.1017/S0027763000021024Search in Google Scholar

[24] O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.Search in Google Scholar

[25] Okumura, M.: Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math. 96 (1974), 207–213.10.2307/2373587Search in Google Scholar

[26] Reilly, R. C.: Varitational properties of functions of the mean curvature in a space form, J. Differential Geom. 8 (1973), 465–477.10.4310/jdg/1214431802Search in Google Scholar

Received: 2018-12-24
Accepted: 2019-06-23
Published Online: 2019-12-22
Published in Print: 2019-12-18

© 2019 Mathematical Institute Slovak Academy of Sciences

Articles in the same Issue

  1. Regular papers
  2. RNDr. Kvetoslava Dvořáková passed away
  3. On the Riesz structures of a lattice ordered abelian group
  4. On Diophantine equation x4 + y4 = n(u4 + v4)
  5. On a Waring-Goldbach problem involving squares and cubes
  6. D(n)-quadruples in the ring of integers of ℚ(√2, √3)
  7. Geometry of ℙ2 blown up at seven points
  8. Preservation of Rees exact sequences
  9. Pointwise multipliers between weighted copson and cesàro function spaces
  10. Some properties associated to a certain class of starlike functions
  11. Asymptotic properties of noncanonical third order differential equations
  12. Existence and regularity results for unilateral problems with degenerate coercivity
  13. Direct and inverse approximation theorems of functions in the Orlicz type spaces 𝓢M
  14. Some approximation properties of a kind of (p, q)-Phillips operators
  15. Best proximity points for a new type of set-valued mappings
  16. Weakly demicompact linear operators and axiomatic measures of weak noncompactness
  17. Fixed point results for F𝓡-generalized contractive mappings in partial metric spaces
  18. Einstein-Weyl structures on trans-Sasakian manifolds
  19. Characterizations of linear Weingarten space-like hypersurface in a locally symmetric Lorentz space
  20. ∗-Ricci solitons and gradient almost ∗-Ricci solitons on Kenmotsu manifolds
  21. Uncorrelatedness sets of discrete random variables via Vandermonde-type determinants
  22. A note on the consistency of wavelet estimators in nonparametric regression model under widely orthant dependent random errors
  23. On adaptivity of wavelet thresholding estimators with negatively super-additive dependent noise
  24. Generalized Meir-Keeler type contractions and discontinuity at fixed point II
Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0320/html
Scroll to top button