Startseite Mathematik D(n)-quadruples in the ring of integers of ℚ(√2, √3)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

D(n)-quadruples in the ring of integers of ℚ(√2, √3)

  • Zrinka Franušić EMAIL logo und Borka Jadrijević
Veröffentlicht/Copyright: 22. Dezember 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let 𝓞𝕂 be the ring of integers of the number field 𝕂 = Q(2,3). A D(n)-quadruple in the ring 𝓞𝕂 is a set of four distinct non-zero elements {z1, z2, z3, z4} ⊂ 𝓞𝕂 with the property that the product of each two distinct elements increased by n is a perfect square in 𝓞𝕂. We show that the set of all n ∈ 𝓞𝕂 such that a D(n)-quadruple in 𝓞𝕂 exists coincides with the set of all integers in 𝕂 that can be represented as a difference of two squares of integers in 𝕂.


The authors were supported by the Croatian Science Foundation under the project no. 6422. Z. F. acknowledges support from the QuantiXLie Center of Excellence, a project co-financed by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004).


  1. Communicated by Milan Paštéka

References

[1] Abu Muriefah, F. S.—Al-Rashed, A.: Some Diophantine quadruples in the ring ℤ[2], Math. Commun. 9 (2004), 1–8.Suche in Google Scholar

[2] Dujella, A.: Generalization of a problem of Diophantus, Acta Arith. 65 (1993), 15–27.10.4064/aa-65-1-15-27Suche in Google Scholar

[3] Dujella, A.: Some polynomial formulas for Diophantine quadruples, Grazer Math. Ber. 328 (1996), 25–30.Suche in Google Scholar

[4] Dujella, A.: The problem of Diophantus and Davenport for Gaussian integers, Glas. Mat. Ser. III 32 (1997), 1–10.Suche in Google Scholar

[5] Dujella, A.: Diophantine quadruples and quintuples modulo 4, Notes Number Theory Discrete Math. 4 (1998), 160–164.Suche in Google Scholar

[6] Dujella, A.—Filipin, A.—Fuchs, C.: Effective solution of the D(−1)-quadruple conjecture, Acta Arith. 128 (2007), 319–338.10.4064/aa128-4-2Suche in Google Scholar

[7] Dujella, A.—Franušić, Z.: On differences of two squares in some quadratic fields, Rocky Mountain J. Math. 37 (2007), 429–453.10.1216/rmjm/1181068760Suche in Google Scholar

[8] Dujella, A.—Soldo, I.: Diophantine quadruples in ℤ[2], An. Stiint. Univ. “Ovidius" Constanta Ser. Mat. 18 (2010), 81–98.Suche in Google Scholar

[9] Franušić, Z.: Diophantine quadruples in the ring ℤ[2], Math. Commun. 9 (2004), 141–148.Suche in Google Scholar

[10] Franušić, Z.: A Diophantine problem in ℤ[(1 + d)/2], Studia Sci. Math. Hungar. 46 (2009), 103–112.Suche in Google Scholar

[11] Franušić, Z.: Diophantine quadruples inZ[4k+3],, Ramanujan J. 17 (2008), 77–88.10.1007/s11139-007-9015-ySuche in Google Scholar

[12] Franušić, Z.: Diophantine quadruples in the ring of integers of the pure qubic field ℚ(23), Miskolc Math. Notes 14 (2013), 893–903.10.18514/MMN.2013.753Suche in Google Scholar

[13] Franušić, Z.—Soldo, I.: The problem of Diophantus for integers of ℚ(3), Rad HAZU, Matematičke znanosti. 18 (2014), 15–25.Suche in Google Scholar

[14] Jukić Matić, Lj.: Non-existence of certain Diophantine quadruples in rings of integers of pure cubic fields, Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), 163–167.10.3792/pjaa.88.163Suche in Google Scholar

[15] Mohanty, S. P.—Ramamsamy, M. S.: On Pr,k sequences, Fibonacci Quart. 23 (1985), 36–44.Suche in Google Scholar

[16] Mootha, V. K.—Berzsenyi, G.: Characterization and extendibility of Pt-sets, Fibonacci Quart. 27 (1989), 287–288.Suche in Google Scholar

[17] Soldo, I.: On the existence of Diophantine quadruples in ℤ[2], Miskolc Math. Notes 14 (2013), 265–277.10.18514/MMN.2013.565Suche in Google Scholar

[18] Williams, K. S.: Integers of biquadratics fields, Canad. Math. Bull. 13 (1970), 519–526.10.4153/CMB-1970-094-8Suche in Google Scholar

Received: 2019-03-27
Accepted: 2019-05-30
Published Online: 2019-12-22
Published in Print: 2019-12-18

© 2019 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Regular papers
  2. RNDr. Kvetoslava Dvořáková passed away
  3. On the Riesz structures of a lattice ordered abelian group
  4. On Diophantine equation x4 + y4 = n(u4 + v4)
  5. On a Waring-Goldbach problem involving squares and cubes
  6. D(n)-quadruples in the ring of integers of ℚ(√2, √3)
  7. Geometry of ℙ2 blown up at seven points
  8. Preservation of Rees exact sequences
  9. Pointwise multipliers between weighted copson and cesàro function spaces
  10. Some properties associated to a certain class of starlike functions
  11. Asymptotic properties of noncanonical third order differential equations
  12. Existence and regularity results for unilateral problems with degenerate coercivity
  13. Direct and inverse approximation theorems of functions in the Orlicz type spaces 𝓢M
  14. Some approximation properties of a kind of (p, q)-Phillips operators
  15. Best proximity points for a new type of set-valued mappings
  16. Weakly demicompact linear operators and axiomatic measures of weak noncompactness
  17. Fixed point results for F𝓡-generalized contractive mappings in partial metric spaces
  18. Einstein-Weyl structures on trans-Sasakian manifolds
  19. Characterizations of linear Weingarten space-like hypersurface in a locally symmetric Lorentz space
  20. ∗-Ricci solitons and gradient almost ∗-Ricci solitons on Kenmotsu manifolds
  21. Uncorrelatedness sets of discrete random variables via Vandermonde-type determinants
  22. A note on the consistency of wavelet estimators in nonparametric regression model under widely orthant dependent random errors
  23. On adaptivity of wavelet thresholding estimators with negatively super-additive dependent noise
  24. Generalized Meir-Keeler type contractions and discontinuity at fixed point II
Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0307/pdf
Button zum nach oben scrollen