Abstract
We aim to present a new linear integral operator and a certain subclass of regular functions with bounded turning property in correlation with the extended generalised Mittag-Leffler functions. Several results concerning an application of differential subordination are also investigated.
(Communicated by Stanisława Kanas)
References
[1] Alexander, J. W.: Functions which map the interior of the unit circle upon simple regions, Ann. Math. 17 (1915), 12–22.10.2307/2007212Search in Google Scholar
[2] Al-Janaby, H. F.—Ghanim, F.—Darus, M.: Third-order differential Sandwich-type result of meromorphic p-valent functions associated with a certain linear operator, Commun. Appl. Anal. 22 (2018), 63–82.Search in Google Scholar
[3] Al-Janaby, H. F.—Ghanim, F.: Sandwich-type outcome based on a dual linear operator, Int. J. Pure Appl. Math. 118 (2018), 819–835.Search in Google Scholar
[4] Antonion, J. A.—Miller, S. S.: Third-order differential inequalities and subordinations in the complex plane, Compl. Var. Elliptic Equ. 56 (2011), 439–454.10.1080/17476931003728404Search in Google Scholar
[5] Aouf, M. K.—Seoudy, T. M.: On differential Sandwich theorems of analytic functions defined by generalized Sălăgean integral operator, Appl. Math. Letters 24 (2011), 1364–1368.10.1016/j.aml.2011.03.011Search in Google Scholar
[6] Bernardi, S. D.: Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429–446.10.1090/S0002-9947-1969-0232920-2Search in Google Scholar
[7] Bieberbach, L.: Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzungsber. Preuss. Akad. Wiss. 138 (1916), 940–955.Search in Google Scholar
[8] Bulut, S.: Some applications of second-oder differential subordination on a class of analytic functions defined by Komatu integral operator, ISRN Math. Anal. 2014 (2014), 1–5.10.1155/2014/606235Search in Google Scholar
[9] Branges, L. D.: A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137–152.10.1007/BF02392821Search in Google Scholar
[10] Duren, P. L.: Univalent Functions, Springer-Verlag, New York, 1983.Search in Google Scholar
[11] Goluzin, G. M.: On the majorization principle in function theory, Dokl. Akad. Nauk. SSSR 42 (1935), 647–650.Search in Google Scholar
[12] Goodman, A. W.: Univalent Functions, Polygonal Publishing House, Washington, NJ, 1983.Search in Google Scholar
[13] Hallenbeck, D. J.—Ruscheweyh, S.: Subordination by convex functions, Proc. Amer. Math. Soc. 52 (1975), 191–195.10.1090/S0002-9939-1975-0374403-3Search in Google Scholar
[14] Ibrahim, R. W.—Ahmad, M. Z.—Al-Janaby, H. F.: Third-order differential subordination and superordination involving a fractional operator, Open Math. 13 (2015), 706–728.10.1515/math-2015-0068Search in Google Scholar
[15] Ibrahim, R. W.—Ahmad, M. Z.—Al-Janaby, H. F.: Upper and lower bounds of integral operator defined by the fractional hypergeometric function, Open Math. 13 (2015), 768–780.10.1515/math-2015-0071Search in Google Scholar
[16] Ibrahim, R. W.—Ahmad, M. Z.—Al-Janaby, H. F.: Differential inequalities imposed by the extended hypergeometric function, SpringerPlus 5 (2016), 1–12.10.1186/s40064-016-1996-9Search in Google Scholar PubMed PubMed Central
[17] Koebe, P.: Über die Uniformisierung beliebiger analytischer Kurven, Göttingen Nachr. (1907), 191–210.Search in Google Scholar
[18] Koebe, P.: Über eine neue Methode der konformen Abbildung und Uniformisierung, Göttingen Nachr. (1912), 844–848.Search in Google Scholar
[19] Libera, R. J.: Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755–758.10.1090/S0002-9939-1965-0178131-2Search in Google Scholar
[20] Macgregor, T. H.: Geometric problems in complex analysis, Amer. Math. Monthly 79 (1972), 447–468.10.1080/00029890.1972.11993067Search in Google Scholar
[21] Miller, S. S.—Mocanu, P. T.: Differential subordinations and univalent function, Michigan Math. J. 28 (1981), 157–171.10.1307/mmj/1029002507Search in Google Scholar
[22] Miller, S. S.—Mocanu, P. T.: Differential Subordinations: Theory and Applications. Series of Monographs and Textbooks in Pure Appl. Math., Vol. 225, Marcel Dekker Inc, New York-Basel, 2000.10.1201/9781482289817Search in Google Scholar
[23] Mittag-Leffler, G. M.: Sur la nouvelle fonction Eα(x), C.R. Acad. Sci. Paris 137 (1903), 554–558.Search in Google Scholar
[24] Oros, G.—Oros, G. I.: A class of holomorphic function II, Libertas Math. 23 (2003), 65–68.10.1155/S0161171203209248Search in Google Scholar
[25] Rahman, G.—Baleanu, D.—Al Qurashi, M.—Purohit, S. D.—Mubeen, S.—Arshad, M.: The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl. 10 (2017), 4244–4253.10.22436/jnsa.010.08.19Search in Google Scholar
[26] Ruscheweyh, S.: New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109–115.10.1090/S0002-9939-1975-0367176-1Search in Google Scholar
[27] Sălăgean, G. S.: Subclasses of univalent functions. In: Complex Analysis – Fifth Romanian-Finnish Seminar, Part I: Proceedings of the Seminar Held in Bucharest 1981. Lecture Notes in Math. 1013, Springer, Berlin, 1983, pp. 362–372.10.1007/BFb0066543Search in Google Scholar
[28] Sokòl, J.—Ibrahim, R. W.—Ahmad, M. Z.—Al-Janaby, H. F.: Inequalities of harmonic univalent functions with connections of hypergeometric functions, Open Math. 13 (2015), 691–705.10.1515/math-2015-0066Search in Google Scholar
[29] Srivastava, H. M.—Frasin, B. A.—Pescar, V.: Univalence of integral operators involving Mittag-Leffler functions, Appl. Math. Inf. Sci. II 3 (2017), 635–641.10.18576/amis/110301Search in Google Scholar
[30] Srivastava, H. M.—Bansal, D.: Close-to-convexity of a certain family of q-Mittag-Leffler functions, J. Nonlinear Var. Anal. 1 (2017), 61–69.Search in Google Scholar
[31] Tang, H.—Srivastava, H. M.—Deniz, E.—Li, S.-H.: Third-order differential superordination involving the generalized Bessel functions, Bull. Malays. Math. Sci. Soc. 38 (2015), 1669–1688.10.1007/s40840-014-0108-7Search in Google Scholar
[32] Tudor, A.-E.: On a subclass of analytic functions involving Sălăgean integral operator, Math. Slovaca 66 (2016), 823–828.10.1515/ms-2015-0185Search in Google Scholar
[33] Wiman, A.: Über den fundamental Satz in der Theorie der FunktionenEα(x), Acta Math. 29 (1905), 191–201.10.1007/BF02403202Search in Google Scholar
© 2019 Mathematical Institute Slovak Academy of Sciences
Articles in the same Issue
- Regular papers
- The life jubilee of Prof. RNDr. Sylvia Pulmannová, DrSc.
- Perfect 1-factorizations
- A topological duality for strong Boolean posets
- On the Diophantine equations x2 + 2α 3β 19γ = yn and x2 + 2α 3β 13γ = yn
- Tribonacci numbers and primes of the form p = x2 + 11y2
- Basic semirings
- A conjecture for varieties of completely regular semigroups
- Uniqueness of meromorphic function with its shift operator under the purview of two or three shared sets
- Differential subordination results for Mittag-Leffler type functions with bounded turning property
- Mittag-Leffler stability for non-instantaneous impulsive Caputo fractional differential equations with delays
- Asymptotically periodic behavior of solutions of fractional evolution equations of order 1 < α < 2
- On the polynomial entropy for morse gradient systems
- Quantitative approximation by Stancu-Durrmeyer-Choquet-Šipoš operators
- A note on non-linear ∗-Jordan derivations on ∗-algebras
- Disjoint hypercyclic weighted translations on locally compact hausdorff spaces
- Some new results on real hypersurfaces with generalized Tanaka-Webster connection
- Relative topological properties of hyperspaces
- Cohomology of torus manifold bundles
- The Menger and projective Menger properties of function spaces with the set-open topology
- Asymptotic behavior of the record values in a stationary Gaussian sequence, with applications
Articles in the same Issue
- Regular papers
- The life jubilee of Prof. RNDr. Sylvia Pulmannová, DrSc.
- Perfect 1-factorizations
- A topological duality for strong Boolean posets
- On the Diophantine equations x2 + 2α 3β 19γ = yn and x2 + 2α 3β 13γ = yn
- Tribonacci numbers and primes of the form p = x2 + 11y2
- Basic semirings
- A conjecture for varieties of completely regular semigroups
- Uniqueness of meromorphic function with its shift operator under the purview of two or three shared sets
- Differential subordination results for Mittag-Leffler type functions with bounded turning property
- Mittag-Leffler stability for non-instantaneous impulsive Caputo fractional differential equations with delays
- Asymptotically periodic behavior of solutions of fractional evolution equations of order 1 < α < 2
- On the polynomial entropy for morse gradient systems
- Quantitative approximation by Stancu-Durrmeyer-Choquet-Šipoš operators
- A note on non-linear ∗-Jordan derivations on ∗-algebras
- Disjoint hypercyclic weighted translations on locally compact hausdorff spaces
- Some new results on real hypersurfaces with generalized Tanaka-Webster connection
- Relative topological properties of hyperspaces
- Cohomology of torus manifold bundles
- The Menger and projective Menger properties of function spaces with the set-open topology
- Asymptotic behavior of the record values in a stationary Gaussian sequence, with applications