Startseite Mathematik Tribonacci numbers and primes of the form p = x2 + 11y2
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Tribonacci numbers and primes of the form p = x2 + 11y2

  • Tim Evink EMAIL logo und Paul Alexander Helminck
Veröffentlicht/Copyright: 21. Mai 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper we show that for any prime number p not equal to 11 or 19, the Tribonacci number Tp−1 is divisible by p if and only if p is of the form x2 + 11y2. We first use class field theory on the Galois closure of the number field corresponding to the polynomial x3x2x − 1 to give the splitting behavior of primes in this number field. After that, we apply these results to the explicit exponential formula for Tp−1. We also give a connection between the Tribonacci numbers and the Fourier coefficients of the unique newform of weight 2 and level 11.

  1. (Communicated by Filippo Nuccio)

Acknowledgement

The authors would like to thank Associate Professor Burkard Polster (from “Mathologer”) for bringing these numbers under their attention through his video on YouTube on Tribonacci numbers. The authors would also like to thank Prof. Jaap Top for pointing out the connection with modular forms and the unique newform of weight 2 and level 11 and the referees for their comments and remarks, in particular for suggesting Lemmas 3.1 and 3.2.

References

[Cai07] Cais, B. : Serre’s conjectures, http://math.stanford.edu/conrad/vigregroup/vigre05/Serre05.Suche in Google Scholar

[CBK+46] Crelle, A. L.—Borchardt, C. W.—Kronecker, L.—Fuchs, L.—Hensel, K.—Hasse, H.—Schottky, F. : Journal für die reine und angewandte Mathematik, 33–34 (1846), https://books.google.nl/books?id=fxNKAQAAMAAJ.Suche in Google Scholar

[DS16] Diamond, F.—Shurman, J. : A First Course in Modular Forms. Graduate Texts in Math. 228, Springer, 2016.Suche in Google Scholar

[Dic99] Dickson, L. E. : History of the Theory of Numbers (3 Volumes), American Mathematical Society, 1999.Suche in Google Scholar

[ECdJ+11] Edixhoven, B.—Couveignes, J-M.—de Jong, R.—Merkl, F.—Bosman, J. : Computational Aspects of Modular Forms and Galois Representations. Ann. of Math. Stud., Princeton University Press, 2011.10.23943/princeton/9780691142012.003.0002Suche in Google Scholar

[KW09a] Khare, Ch.—Wintenberger, J-P. : Serre’s modularity conjecture (I), Invent. Math. 178(3) (2009), 485–504.10.1142/9789814324359_0051Suche in Google Scholar

[KW09b] Khare, Ch.—Wintenberger, J-P. : Serre’s modularity conjecture (II), Invent. Math. 178(3) (2009), 505–586.10.1007/s00222-009-0206-6Suche in Google Scholar

[RS18] Ribet, K.—Stein, W. : Lectures on Serre’s Conjectures, https://wstein.org/papers/serre/ribet-stein.pdf.Suche in Google Scholar

[Ser56] Serre, J-P. : Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier 6 (1956), 1–42.10.1007/978-3-642-39816-2_32Suche in Google Scholar

[Ser77] Serre, J-P. : Linear Representations of Finite Groups, Springer New York, 1977.10.1007/978-1-4684-9458-7Suche in Google Scholar

[Ser87] Serre, J-P. : Sur les représentations modulaires de degré 2 de Gal(Q/Q), Duke Math. J. 54(1) (1987), 179–230.10.1215/S0012-7094-87-05413-5Suche in Google Scholar

[Shi66] Shimura, G. : A reciprocity law in non-solvable extensions, J. Reine Angew. Math. 221 (1966), 209–220.10.1007/978-1-4612-2074-9_27Suche in Google Scholar

[Shi71] Shimura, G. : Introduction to the Arithmetic Theory of Automorphic Functions. Kanô memorial lectures, Princeton University Press, 1971.Suche in Google Scholar

[Sil09] Silverman, J. H. : The Arithmetic of Elliptic Curves, Springer, New York, 2009.10.1007/978-0-387-09494-6Suche in Google Scholar

[ST15] Silverman J. H.—Tate J. T. : Rational Points on Elliptic Curves, Springer International Publishing, 2015.10.1007/978-3-319-18588-0Suche in Google Scholar

[Ste17] Stevenhagen, P. : Algebraic Number Theory, http://websites.math.leidenuniv.nl/algebra/ant.pdf.Suche in Google Scholar

[Ste02] Stevenhagen, P. : Class Field Theory, http://websites.math.leidenuniv.nl/algebra/cft.pdf.Suche in Google Scholar

[Wes18] Weston, T. : The modular curves X0(11) and X1(11), http://swc.math.arizona.edu/aws/2001/01Weston1.pdf.Suche in Google Scholar

Received: 2018-03-28
Accepted: 2018-07-22
Published Online: 2019-05-21
Published in Print: 2019-06-26

© 2019 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0244/pdf
Button zum nach oben scrollen