Home On the 2-class field tower of subfields of some cyclotomic ℤ2-extensions
Article
Licensed
Unlicensed Requires Authentication

On the 2-class field tower of subfields of some cyclotomic ℤ2-extensions

  • Ali Mouhib EMAIL logo
Published/Copyright: January 22, 2019
Become an author with De Gruyter Brill

Abstract

We study the structure of the Galois group of the maximal unramified 2-extension of some family of number fields of large degree. Especially, we show that for each positive integer n, there exist infinitely many number fields with large degree, for which the defined Galois group is quaternion of order 2n.

  1. (Communicated by Milan Paštéka)

Acknowledgement

The author would like to express its gratitude to King Khalid University, Saudi Arabia for providing administrative and technical support.

The author also thanks the anonymous referee for his/her careful reading of the manuscript and helpful comments.

References

[1] Azizi, A.—Mouhib, A.: Capitulation des 2-classes d’idéaux de certains corps biquadratiques dont le corps de genres diffère du 2-corps de classe de Hilbert, Pacific J. Math. 218 (2005), 17–36.10.2140/pjm.2005.218.17Search in Google Scholar

[2] Azizi, A.—Mouhib, A.: Capitulation des 2-classes d’idéaux deQ(2,d)où d est un entier naturel sans facteur carrés, Acta Arith. 109 (2003), 27–63.10.4064/aa109-1-2Search in Google Scholar

[3] Azizi, A.—Mouhib, A.: Sur le 2-groupe de classes du corps de genres de certains corps biquadratiques, Ann. Sci. Math. Québec. 27 (2003), 123–134.10.2140/pjm.2003.208.1Search in Google Scholar

[4] Azizi, A.—Talbi, M.: Capitulation dans certaines extensions non ramifiées de corps quartiques cycliques, Arch. Math. (Brno) 44 (2008), 271–284.Search in Google Scholar

[5] Azizi, A.—Talbi, M.: Capitulation des 2-classes d’idéaux de certains corps biquadratiques cycliques, Acta. Arith. 127 (2007), 231–248.10.4064/aa127-3-3Search in Google Scholar

[6] Benjamin, E.—Snyder, C.: Real quadratic number fields with 2-class group of type (2,2), Math. Scand. 76 (1995), 161–178.10.7146/math.scand.a-12532Search in Google Scholar

[7] Couture, R.—Derhem, A.: Un problème de capitulation, C. R. Acad. Sci. Paris, sér. I Math. 314 (1992), 785–788.Search in Google Scholar

[8] Ferrero, B.: The cyclotomic2-extension of imaginary quadratic fields, Amer. J. Math. 102 (1980), 447–459.10.2307/2374108Search in Google Scholar

[9] Gorenstein, D.: Finite Groups, Harper and Row, New York, 1968.Search in Google Scholar

[10] Heider, F. P.—Schmithals, B.: Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. Reine Angew. Math. 366 (1982), 1–25.10.1515/crll.1982.336.1Search in Google Scholar

[11] Iwasawa, K.: A note on capitulation problem for number fields, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), 59–61.10.3792/pjaa.65.59Search in Google Scholar

[12] Kisilevsky, H.: Number fields with class number congruent to 4 mod 8 and Hilbert’s theorem 94, J. Number Theory 8 (1976), 271–279.10.1016/0022-314X(76)90004-4Search in Google Scholar

[13] Mouhib, A.: Capitulation of the 2-class group of some cyclic number fields with large degree, Math Nachr. 289(14–15) (2016), 1927–1933.10.1002/mana.201500355Search in Google Scholar

[14] Taussky, O.: A remark concerning Hilbert’s theorem 94, J. Reine Angew. Math. 239/240 (1970), 435–438.10.1515/crll.1969.239-240.435Search in Google Scholar

[15] Washington, L. C.: Introduction to Cyclotomic Fields. Graduate Texts in Math. 83, Second edition, Springer-Verlag, New York, 1997.10.1007/978-1-4612-1934-7Search in Google Scholar

Received: 2017-08-16
Accepted: 2018-01-26
Published Online: 2019-01-22
Published in Print: 2019-02-25

© 2019 Mathematical Institute Slovak Academy of Sciences

Downloaded on 1.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0204/html?lang=en
Scroll to top button