Startseite Mathematik Probabilistic uniformization and probabilistic metrization of probabilistic convergence groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Probabilistic uniformization and probabilistic metrization of probabilistic convergence groups

  • T. M. G. Ahsanullah EMAIL logo und Gunther Jäger
Veröffentlicht/Copyright: 14. Juli 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We define probabilistic convergence groups based on Tardiff’s neighborhood systems for probabilistic metric spaces and develop the basic theory. We study, as natural examples, probabilistic metric groups and probabilistic normed groups as well as probabilistic limit groups under a t-norm as defined earlier by the authors. We further show that a probabilistic convergence group induces a natural probabilistic uniform convergence structure and give a result on probabilistic metrization.


(Communicated by Anatolij Dvurečenskij)


Acknowledgement

We are sincerely thankful to both the referees for their scrupulous checking of our previous manuscript, and offering various useful suggestions including some interesting references which led to an improvement of this paper. We also thank the area editor Professor Anatolij Dvurečenskij for his kind support.

References

[1] Adámek, J.—Herrlich, H.—Strecker, G. E.: Abstract and Concrete Categories, J. Wiley & Sons, New York, 1990.Suche in Google Scholar

[2] Alsina, C.—Schweizer, B.—Sklar, A.: On the definition of a probabilistic normed space, Aequat. Math. 46 (1993), 91-98.10.1007/BF01834000Suche in Google Scholar

[3] Bahrami, F.—Mohammadbaghban, M.: Probabilistic Lp spaces, J. Math. Anal. Appl. 402 (2013), 505-517.10.1016/j.jmaa.2013.01.041Suche in Google Scholar

[4] Borzová-Molnárová, J.—Halčinová, L.—Hutník, O.: Probabilistic-valued decomposable set functions with respect to triangle functions, Inform. Sci. 295 (2015), 347–357.10.1016/j.ins.2014.09.047Suche in Google Scholar

[5] Bourbaki, N.: General Topology I, Addison-Wesley, Reading, MA, 1966.10.1007/978-3-642-61703-4Suche in Google Scholar

[6] Brock, P.: Probabilistic convergence spaces and generalized metric spaces, Int. J. Math. Math. Sci. 21 (1998), 439-452.10.1155/S0161171298000611Suche in Google Scholar

[7] Cook, C. H.—Fischer, H. R.: Uniform convergence structures, Math. Ann. 173 (1967), 290-306.10.1007/BF01781969Suche in Google Scholar

[8] Császár, Á.: λ-complete filter spaces, Acta Math. Hungar. 70 (1996), 75-87.10.1007/BF00113914Suche in Google Scholar

[9] Fischer, H. R.: Limesräume, Math. Ann. 137 (1959), 269-303.10.1007/BF01360965Suche in Google Scholar

[10] Florescu, L. C: Probabilistic convergence structures, Aequat. Math. 38 (1989), 123-145.10.1007/BF01839999Suche in Google Scholar

[11] Frank, M. J.: Probabilistic topological spaces, J. Math. Anal. Appl. 34 (1971), 67-81.10.1016/0022-247X(71)90158-2Suche in Google Scholar

[12] Fritsche, R.: Topologies for probabilistic metric spaces, Fund. Math. 72 (1971), 7-16.10.4064/fm-72-1-7-16Suche in Google Scholar

[13] Gähler, W.: Grundstrukturen der Analysis I, II, Birkhäuser, Basel and Stuttgart, 1978.10.1515/9783112527467Suche in Google Scholar

[14] Halčinová, L.—Hutník, O.: An integral with respect to probabilistic-valued decomposable measures, Internat. J. Approx. Reason. 55 (2014), 1469-1484.10.1016/j.ijar.2014.04.013Suche in Google Scholar

[15] Hutník, O.—Mesiar, R.: On a certain class of submeasures based on triangular norms, Internat. J. Uncertain Fuzziness Knowledge-Based Systems 17 (2009), 297–316.10.1142/S0218488509005887Suche in Google Scholar

[16] Jäger, G—Ahsanullah, T. M. G.: Probabilistic limit groups under a t-norm, Topology Proc. 44 (2014), 59-74.Suche in Google Scholar

[17] Jäger, G.—Ahsanullah, T. M. G.: Probabilistic uniform convergence spaces redefined, Acta Math. Hungar. 146 (2015), 376-390.10.1007/s10474-015-0525-6Suche in Google Scholar

[18] Jäger, G.: A convergence theory for probabilistic metric spaces, Quest. Math. 3 (2015), 587–599.10.2989/16073606.2014.981734Suche in Google Scholar

[19] Klement, E. P.—Mesiar, R.—Pap, E.: Triangular Norms, Kluwer Academic Publishers, Dordrecht, 2000.10.1007/978-94-015-9540-7Suche in Google Scholar

[20] Lipovan, O.: Submeasures with probabilistic structures, Math. Moravica 4 (2000), 59–65.10.5937/MatMor0004059LSuche in Google Scholar

[21] Lipovan, O.: A probabilistic generalization of integrability for positive functions, Novi Sad J. Math. 34 (2004), 53-60.Suche in Google Scholar

[22] Menger, K.: Statistical metrics, Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 535-537.10.1007/978-3-7091-6045-9_35Suche in Google Scholar

[23] Nusser, H.: A generalization of probabilistic uniform spaces, Appl. Cat. Structures 10 (2002), 81–98.10.1023/A:1013375301613Suche in Google Scholar

[24] Preuss, G.: Foundations of Topology: An Approach to Convenient Topology, Kluwer Academic Publishers, Dordrecht, 2002.10.1007/978-94-010-0489-3Suche in Google Scholar

[25] Richardson, G. D.—Kent, D. C: Probabilistic convergence spaces, J. Austral. Math. Soc. 61 (1996), 400-420.10.1017/S1446788700000483Suche in Google Scholar

[26] Richardson, G. D.: Convergence in probabilistic semimetric spaces, Rocky Mountain J. Math. 18 (1988), 617-634.10.1216/RMJ-1988-18-3-617Suche in Google Scholar

[27] Schweizer, B.—Sklar, A.: Probabilistic Metric Spaces, North-Holland, New York, 1983.Suche in Google Scholar

[28] Saminger, S.—Sempi, C: A primer on triangle functions I, Aequat. Math. 76 (2008), 201-240.10.1007/s00010-008-2936-8Suche in Google Scholar

[29] Sencimen, C.—Pehlivan, S.: Strong ideal convergence in probabilistic metric spaces, Proc. Indian Acad. Sci. 119 (2009), 401–410.10.1007/s12044-009-0028-xSuche in Google Scholar

[30] Šerstnev, A. N.: On the notion of a random normed space, Dokl. Akad. Nauk SSSR 149 (1963), 280–283 (in Russian).Suche in Google Scholar

[31] Sherwood, H.: On E-spaces and their relation to other classes of probabilistic metric spaces, J. London Math. Soc. 44 (1969), 441–448.10.1112/jlms/s1-44.1.441Suche in Google Scholar

[32] Sibley, D. A.: A metric for weak convergence of distribution functions, Rocky Mountain J. Math. 1 (1971), 427–430.10.1216/RMJ-1971-1-3-427Suche in Google Scholar

[33] Tardiff, R. M.: Topologies for probabilistic metric spaces, Pacific J. Math. 65 (1976), 233–251.10.2140/pjm.1976.65.233Suche in Google Scholar

[34] Thorp, E.: Generalized topologies for statistical metric spaces, Fund. Math. 51 (1962), 9–12.10.4064/fm-51-1-9-21Suche in Google Scholar

[35] Wald, A.: On a statistical generalization of metric spaces, Proc. Nat. Acad. Sci. U. S. A. 29 (1943), 196–197.10.1073/pnas.29.6.196Suche in Google Scholar PubMed PubMed Central

Received: 2015-4-13
Accepted: 2016-4-11
Published Online: 2017-7-14
Published in Print: 2017-8-28

© 2017 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0027/pdf?lang=de
Button zum nach oben scrollen