Startseite Ricci solitons on 3-dimensional cosymplectic manifolds
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ricci solitons on 3-dimensional cosymplectic manifolds

  • Yaning Wang EMAIL logo
Veröffentlicht/Copyright: 14. Juli 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we prove that if a 3-dimensional cosymplectic manifold M3 admits a Ricci soliton, then either M3 is locally flat or the potential vector field is an infinitesimal contact transformation.


(Communicated by Július Korbaš)

This work was supported by the National Science Foundation of China (No. 11526080) and Key Scientific Research Program in Universities of Henan Province (No. 16A110004).

Acknowledgement

I would like to thank the anonymous referee and editor for their many helpful comments.

References

[1] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progr. Math., Vol. 203, Birkhäuser, 2010.10.1007/978-0-8176-4959-3Suche in Google Scholar

[2] Boyer, C. P.—Galicki, K.: Einstein manifolds and contact geometry, Proc. Amer. Math. Soc. 129 (2001), 2419–2430.10.1090/S0002-9939-01-05943-3Suche in Google Scholar

[3] Cho, J. T.: Almost contact 3-manifolds and Ricci solitons, Int. J. Geom. Methods Mod. Phys. 10 (2013), 1220022.10.1142/S0219887812200228Suche in Google Scholar

[4] Cho, J. T.—Sharma, R.: Contact geometry and Ricci solitons, Int. J. Geom. Methods Mod. Phys. 7 (2010), 951–960.10.1142/S0219887810004646Suche in Google Scholar

[5] Ghosh, A.: Kenmotsu 3-metric as a Ricci soliton, Chaos Solitons Fractals 44 (2011), 647–650.10.1016/j.chaos.2011.05.015Suche in Google Scholar

[6] Ghosh, A.—Sharma, R.—Cho, J. T.: Contact metric manifolds with η-parallel torsion tensor, Ann. Glob. Anal. Geom. 34 (2008), 287–299.10.1007/s10455-008-9112-1Suche in Google Scholar

[7] Goldberg, S. I.: Integrability of almost Kaehler manifolds, Proc. Amer. Math. Soc. 21 (1969), 96–100.10.1090/S0002-9939-1969-0238238-1Suche in Google Scholar

[8] Goldberg, S. I.—Yano, K.: Integrability of almost cosymplectic structures, Pacific J. Math. 31 (1969), 373–382.10.2140/pjm.1969.31.373Suche in Google Scholar

[9] Hamilton, R. S.: Three-manifolds with positive Ricci curvature, J. Differ. Geom. 17 (1982), 255–306.10.4310/jdg/1214436922Suche in Google Scholar

[10] Hamilton, R. S.: The Ricci Flow on Surfaces. Contemp. Math. No. 71, Amer. Math. Soc., 1988.Suche in Google Scholar

[11] Olszak, Z.: On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), 239–250.10.2996/kmj/1138036371Suche in Google Scholar

[12] Perelman, G.: The entropy formula for the Ricci flow and its geometric applications, e-print (2002), arXiv: 0211159.Suche in Google Scholar

[13] Sharma, R.: Certain results on K-contact and (k, µ)-contact manifolds, J. Geom. 89 (2008), 138–147.10.1007/s00022-008-2004-5Suche in Google Scholar

[14] Sharma, R.—Ghosh, A.: Sasakian 3-manifold as a Ricci soliton represents the Heisenberg group, Int. J. Geom. Methods Mod. Phys. 8 (2011), 149–154.10.1142/S021988781100504XSuche in Google Scholar

[15] Tanno, S.: Note on infinitesimal transformations over contact manifolds, Tohoku Math. J. 14 (1962), 416–430.10.2748/tmj/1178244078Suche in Google Scholar

[16] Wei, G.—Wylie, W.: Comparison geometry for the Bakry-Emery Ricci tensor, J. Differ. Geom. 83 (2009), 377–405.10.4310/jdg/1261495336Suche in Google Scholar

[17] Yano, K.: Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.Suche in Google Scholar

Received: 2015-1-30
Accepted: 2015-6-4
Published Online: 2017-7-14
Published in Print: 2017-8-28

© 2017 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0026/html?lang=de
Button zum nach oben scrollen