Startseite Monotonicity results for delta fractional differences revisited
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Monotonicity results for delta fractional differences revisited

  • Lynn Erbe , Christopher S. Goodrich , Baoguo Jia und Allan Peterson EMAIL logo
Veröffentlicht/Copyright: 14. Juli 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, by means of a recently obtained inequality, we study the delta fractional difference, and we obtain the following interrelated theorems, which improve recent results in the literature.

Theorem A

Assume that f : ℕa → ℝ and thatΔaνf(t) ≥ 0, for eacht ∈ ℕa+2−ν, with 1 < ν < 2. Iff(a+1)νk+2f(a),for each k ∈ ℕ0, then Δ f(t) ≥ 0 for t ∈ ℕa+1.

Theorem B

Assume that f : ℕa → ℝ and thatΔaνf(t) ≥ 0, for each t ∈ ℕa+2−ν, with 1 < ν < 2. If

f(a+2)νk+1f(a+1)+(k+1ν)ν(k+2)(k+3)f(a)
for each k ∈ ℕ1, then Δ f(t) ≥ 0 for t ∈ ℕa+2.

Theorem C

Assume that f : ℕa → ℝ and thatΔaνf(t) ≥ 0, for each t ∈ ℕa+2−ν, with 1 < ν < 2. If

f(a+3)νkf(a+2)+(kν)νk(k+1)f(a+1)+(k+1ν)(kν)ν(k+2)(k+1)kf(a)
for k ∈ ℕ2, then Δ f(t) ≥ 0, fort ∈ ℕa+3.

In addition, we obtain the following result, which extends a recent result due to Atici and Uyanik.

Theorem D

Assume that f : ℕa → ℝ, ΔNf(t) ≥ 0 for t ∈ ℕa, and (−1)NiΔif(a) ≤ 0 fori = 0, 1, …, N − 1. ThenΔaνf(t) ≥ 0 fort ∈ ℕa+Nν.


(Communicated by Ján Borsík)

The third author, B. Jia, was supported by The National Natural Science Foundation of China (No.11271380) and Guangdong Province Key Laboratory of Computational Science.

Acknowledgement

The authors would like to thank the two anonymous referees for their useful suggestions and comments.

References

[1] Abdeljawad, T.: Dual identities in fractional difference calculus within Riemann, Adv. Difference Equ. (2013) 2013:36, 16 pp.10.1186/1687-1847-2013-36Suche in Google Scholar

[2] Abdeljawad, T.: On delta and nabla Caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc. (2013), Art. ID 406910, 12 pp.10.1155/2013/406910Suche in Google Scholar

[3] Anastassiou, G.: Foundations of nabla fractional calculus on time scales and inequalities, Comput. Math. Appl. 59 (2010), 3750–3762.10.1016/j.camwa.2010.03.072Suche in Google Scholar

[4] Atici, F. M.—Acar, N.: Exponential functions of discrete fractional calculus, Appl. Anal. Discrete Math. 7 (2013), 343–353.10.2298/AADM130828020ASuche in Google Scholar

[5] Atici, F. M.—Eloe, P. W.: Initial value problems in discrete fractional calculus, Proc. Amer. Math. Soc. 137 (2009), 981–989.10.1090/S0002-9939-08-09626-3Suche in Google Scholar

[6] Atici, F. M.—Eloe, P. W.: Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ. 3 (2009), 1–12.10.14232/ejqtde.2009.4.3Suche in Google Scholar

[7] Atici, F. M.—Eloe, P. W.: Two-point boundary value problems for finite fractional difference equations, J. Difference Equ. Appl. 17 (2011), 445–456.10.1080/10236190903029241Suche in Google Scholar

[8] Atici, F. M.—Eloe, P. W.: Linear systems of fractional nabla difference equations, Rocky Mountain J. Math. 41 (2011), 353–370.10.1216/RMJ-2011-41-2-353Suche in Google Scholar

[9] Atici, F. M.—Eloe, P. W.: Gronwall’s inequality on discrete fractional calculus, Comput. Math. Appl. 64 (2012), 3193–3200.10.1016/j.camwa.2011.11.029Suche in Google Scholar

[10] Atici, F. M.—Uyanik, M.: Analysis of discrete fractional operators, Appl. Anal. Discrete Math. 9 (2015), 139–149.10.2298/AADM150218007ASuche in Google Scholar

[11] Bastos, N. R. O.—Mozyrska, D.—Torres, D. F. M.: Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform, Int. J. Math. Comput. 11 (2011), 1–9.Suche in Google Scholar

[12] Bohner, M.—Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001.10.1007/978-1-4612-0201-1Suche in Google Scholar

[13] Bohner, M.—Peterson, A.: Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.10.1007/978-0-8176-8230-9Suche in Google Scholar

[14] Dahal, R.—Goodrich, C. S.: A monotonicity result for discrete fractional difference operators, Arch. Math. (Basel) 102 (2014), 293–299.10.1007/s00013-014-0620-xSuche in Google Scholar

[15] Dahal, R.—Goodrich, C. S.: Erratum to “R. Dahal, C. S. Goodrich, A monotonicity result for discrete fractional difference operators, Arch. Math. (Basel) 102 (2014), 293–299”, Arch. Math. (Basel) 104 (2015), 599–600.10.1007/s00013-014-0620-xSuche in Google Scholar

[16] Ferreira, R. A. C.: A discrete fractional Gronwall inequality, Proc. Amer. Math. Soc. 140 (2012), 1605–1612.10.1090/S0002-9939-2012-11533-3Suche in Google Scholar

[17] Ferreira, R. A. C.: Existence and uniqueness of solutions to some discrete fractional boundary value problems of order less than one, J. Difference Equ. Appl. 19 (2013), 712–718.10.1080/10236198.2012.682577Suche in Google Scholar

[18] Ferreira, R. A. C.—Goodrich, C. S.: Positive solution for a discrete fractional periodic boundary value problem, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 19 (2012), 545–557.Suche in Google Scholar

[19] Ferreira, R. A. C.—Torres, D. F. M.: Fractional h-difference equations arising from the calculus of variations, Appl. Anal. Discrete Math. 5 (2011), 110–121.10.2298/AADM110131002FSuche in Google Scholar

[20] Goodrich, C. S.: Solutions to a discrete right-focal boundary value problem, Int. J. Difference Equ. 5 (2010), 195–216.Suche in Google Scholar

[21] Goodrich, C. S.: On discrete sequential fractional boundary value problems, J. Math. Anal. Appl. 385 (2012), 111–124.10.1016/j.jmaa.2011.06.022Suche in Google Scholar

[22] Goodrich, C. S.: On semipositone discrete fractional boundary value problems with nonlocal boundary conditions, J. Difference Equ. Appl. 19 (2013), 1758–1780.10.1080/10236198.2013.775259Suche in Google Scholar

[23] Goodrich, C. S.: A convexity result for fractional differences, Appl. Math. Lett. 35 (2014), 58–62.10.1016/j.aml.2014.04.013Suche in Google Scholar

[24] Goodrich, C. S.: Systems of discrete fractional boundary value problems with nonlinearities satisfying no growth conditions, J. Difference Equ. Appl. 21 (2015), 437–453.10.1080/10236198.2015.1013537Suche in Google Scholar

[25] Goodrich, C.—Peterson, A. C.: Discrete Fractional Calculus, Springer, Cham, 2015.10.1007/978-3-319-25562-0Suche in Google Scholar

[26] Holm, M.: Sum and difference compositions in discrete fractional calculus, Cubo 13 (2011), 153–184.10.4067/S0719-06462011000300009Suche in Google Scholar

[27] Jia, B.—Erbe, L.—Peterson, A.: Two monotonicity results for nabla and delta fractional differences, Arch. Math. (Basel) 104 (2015), 589–597.10.1007/s00013-015-0765-2Suche in Google Scholar

[28] Jia, B.—Erbe, L.—Peterson, A.: Convexity for nabla and delta fractional differences, J. Difference Equ. Appl. 21 (2015), 360–373.10.1080/10236198.2015.1011630Suche in Google Scholar

[29] Kelley, W.—Peterson, A.: Difference Equations: An Introduction with Applications, 2. edition, Harcourt/Academic Press, Cambridge, 2001.Suche in Google Scholar

[30] Wu, G.—Baleanu, D.: Discrete fractional logistic map and its chaos, Nonlinear Dyn. 75 (2014), 283–287.10.1007/s11071-013-1065-7Suche in Google Scholar

Received: 2015-6-1
Accepted: 2016-1-22
Published Online: 2017-7-14
Published in Print: 2017-8-28

© 2017 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0018/pdf
Button zum nach oben scrollen