Startseite Mathematik Only finitely many Tribonacci Diophantine triples exist
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Only finitely many Tribonacci Diophantine triples exist

  • Clemens Fuchs EMAIL logo , Christoph Hutle , Nurettin Irmak , Florian Luca und László Szalay
Veröffentlicht/Copyright: 14. Juli 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Diophantine triples taking values in recurrence sequences have recently been studied quite a lot. In particular the question was raised whether or not there are finitely many Diophantine triples in the Tribonacci sequence. We answer this question here in the affirmative. We prove that there are only finitely many triples of integers 1 ≤ u < v < w such that uv + 1, uw + 1, vw + 1 are Tribonacci numbers. The proof depends on the Subspace theorem.


(Communicated by Federico Pellarin)

C. Fuchs and C. Hutle were supported by FWF (Austrian Science Fund) grant No. P24574 and by the Sparkling Science project EMMA grant No. SPA 05/172.

References

[1] Bravo, J. J.—Luca, F.: On a conjecture about repdigits in k-generalized Fibonacci sequences, Publ. Math. Debrecen 82 (2013), 623–639.10.5486/PMD.2013.5390Suche in Google Scholar

[2] Dujella, A.: There are only finitely many Diophantine quintuples. J. Reine Angew. Math. 566 (2004), 183–214.10.1515/crll.2004.003Suche in Google Scholar

[3] Dujella, A.: Diophantine m-tuples, https://web.math.pmf.unizg.hr/duje/dtuples.html.Suche in Google Scholar

[4] Evertse, J.-H.—Schmidt, W. M.—Schlickewei, H.-P.: Linear equations in variables which lie in a multipilicative group, Ann. of Math. 155 (2002), 807–836.10.2307/3062133Suche in Google Scholar

[5] Evertse, J.-H.: An improvement of the quantitative Subspace theorem, Compos. Math. 101 (1996), 225–311.Suche in Google Scholar

[6] Fuchs, C.: Polynomial-exponential equations and linear recurrences, Glas. Mat. 38 (2003), 233–252.10.3336/gm.38.2.03Suche in Google Scholar

[7] Fuchs, C.: Diophantine problems with linear recurrences via the Subspace theorem, Integers 5 (2005), A8.Suche in Google Scholar

[8] Fuchs, C.: Polynomial-exponential equations involving multi-recurrences, Studia Sci. Math. Hungar. 46 (2009), 377–398.10.1556/sscmath.2009.1098Suche in Google Scholar

[9] Fuchs, C.—Luca, F.—Szalay, L.: Diophantine triples with values in binary recurrences, Ann. Sc. Norm. Super. Pisa Cl. Sc. 7 (2008), 579–608.10.2422/2036-2145.2008.4.01Suche in Google Scholar

[10] Fuchs, C.—Tichy, R. F.: Perfect powers in linear recurrence sequences, Acta Arith. 107 (2003), 9–25.10.4064/aa107-1-2Suche in Google Scholar

[11] Gomez Ruiz, C. A.—Luca, F.: Tribonacci Diophantine quadruples, Glas. Mat. 50 (2015), 17–24.10.3336/gm.50.1.02Suche in Google Scholar

[12] Gomez Ruiz, C. A.—Luca, F.: Diophantine quadruples in the sequence of shifted Tribonacci numbers, Publ. Math. Debrecen 86 (2015), 473–491.10.5486/PMD.2015.7118Suche in Google Scholar

[13] Irmak, N.—Szalay, L.: Diophantine triples and reduced quadruples with the Lucas sequence of recurrenceun = Aun−1 − un−2, Glas. Mat.49 (2014), 303–312.10.3336/gm.49.2.05Suche in Google Scholar

[14] Luca, F.—Szalay, L.: Fibonacci Diophantine Triples, Glas. Mat. 43 (2008), 253–264.10.3336/gm.43.2.03Suche in Google Scholar

[15] Luca, F.—Szalay, L.: Lucas Diophantine Triples, Integers 9 (2009), 441–457.10.1515/INTEG.2009.037Suche in Google Scholar

[16] Spickerman, W. R.: Binet’s formula for the Tribonacci numbers, Fibonacci Quart. 20 (1982), 118–120.10.1080/00150517.1982.12430006Suche in Google Scholar

Received: 2015-8-31
Accepted: 2015-11-25
Published Online: 2017-7-14
Published in Print: 2017-8-28

© 2017 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0015/pdf?lang=de
Button zum nach oben scrollen