Startseite Mathematik Dirichlet boundary value problem for differential equation with ϕ-Laplacian and state-dependent impulses
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Dirichlet boundary value problem for differential equation with ϕ-Laplacian and state-dependent impulses

  • Jan Tomeček EMAIL logo
Veröffentlicht/Copyright: 28. April 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The paper deals with the boundary value problem for differential equation with ϕ-Laplacian and state-dependent impulses of the form

ϕ(z(t))=f(t,z(t),z(t)) for a.e. t[0,T]R,Δz(t)=M(z(t),z(t)),t=γ(z(t)),z(0)=z(T)=0.

Here, T > 0, ϕ : ℝ → ℝ is an increasing homeomorphism, ϕ(ℝ) = ℝ, ϕ(0) = 0, f : [0, T] × ℝ2 → ℝ satisfies Carathéodory conditions, M : ℝ → ℝ is continuous and γ : ℝ → (0, T) is continuous, Δ z′(t) = z′(t+) − z′(t−). Sufficient conditions for the existence of at least one solution to this problem having no pulsation behaviour are provided.

MSC 2010: Primary 34B37

(Communicated by Michal Fečkan)


References

[1] Agarwal, R. P.—O’Regan, D.: Multiple nonnegative solutions for second order impulsive differential equations, Appl. Math. Comput. 114 (2000), 51–59.10.1016/S0096-3003(99)00074-0Suche in Google Scholar

[2] Azbelev, N. V.—Maksimov, V. P.—Rakhmatullina, L. F.: Introduction to the Theory of Functional Differential Equations: Methods and Applications. Contemp. Math. Appl. 3, Hindawi Publ. Corp., New York, 2007.10.1155/9789775945495Suche in Google Scholar

[3] Bai, L.—Dai, B.: An application of variational method to a class of Dirichlet boundary value problems with impulsive effects, J. Franklin Inst. 348 (2011), 2607–2624.10.1016/j.jfranklin.2011.08.003Suche in Google Scholar

[4] Bai, L.—Dai, B.: Three solutions for a p-Laplacian boundary value problem with impulsive effects, Appl. Math. Comput. 217 (2011), 9895–9904.10.1016/j.amc.2011.03.097Suche in Google Scholar

[5] Bainov, D. D.—Simeonov, P. S.: Impulsive Differential Equations: Periodic Solutions and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics 66, Longman Scientific and Technical, Essex, England, 1993.Suche in Google Scholar

[6] Bajo, I.—Liz, E.: Periodic boundary value problem for first order differential equations with impulses at variable times, J. Math. Anal. Appl. 204 (1996), 65–73.10.1006/jmaa.1996.0424Suche in Google Scholar

[7] Belley, J. M.—Virgilio, M: Periodic Duffing delay equations with state dependent impulses, J. Math. Anal. Appl. 306 (2005), 646–662.10.1016/j.jmaa.2004.10.023Suche in Google Scholar

[8] Belley, J. M.—Virgilio, M: Periodic Liénard-type delay equations with state-dependent impulses, Nonlinear Anal. 64 (2006), 568–589.10.1016/j.na.2005.06.025Suche in Google Scholar

[9] Benchohra, M.—Graef, J. R.—Ntouyas, S. K.—Ouahab, A.: Upper and lower solutions method for impulsive differential inclusions with nonlinear boundary conditions and variable times, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 12 (2005), 383–396.Suche in Google Scholar

[10] Cabada, A.—Liz, E.—Lois, S.: Green’s function and maximum principle for higher order ordinary differential equations with impulses, Rocky Mountain J. Math. 30 (2000), 435–444.10.1216/rmjm/1022009274Suche in Google Scholar

[11] Cabada, A.—Thompson, B.: Nonlinear second-order equations with functional implicit impulses and nonlinear functional boundary conditions, Nonlinear Anal. 74 (2011), 7198–7209.10.1016/j.na.2011.07.047Suche in Google Scholar

[12] Cabada, A.—Tomeček, J.: Extremal solutions for nonlinear functional ϕ-Laplacian impulsive equations, Nonlinear Anal. 67 (2007), 827–841.10.1016/j.na.2006.06.043Suche in Google Scholar

[13] Chu, J.—Nieto, J. J.: Impulsive periodic solutions of first-order singular differential equations, Bull. London Math. Soc. 40 (2008), 143–150.10.1112/blms/bdm110Suche in Google Scholar

[14] Feng, M.—Du, B.—Ge, W: Impulsive boundary value problems with integral boundary conditions and one-dimensional p-Laplacian, Nonlinear Anal. 70 (2009), 3119–3126.10.1016/j.na.2008.04.015Suche in Google Scholar

[15] Ferrara, M.—Heidarkhani, S.: Multiple solutions for perturbed p-Laplacian boundary-value problems with impulsive effects, Electron. J. Differential Equations 2014 (2014), 1–14.10.1155/2014/485647Suche in Google Scholar

[16] Frigon, M.—O’Regan, D.: First order impulsive initial and periodic problems with variable moments, J. Math. Anal. Appl. 233 (1999), 730–739.10.1006/jmaa.1999.6336Suche in Google Scholar

[17] Frigon, M.—O’Regan, D.: Second order Sturm-Liouville BVP’s with impulses at variable moments, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 8 (2001), 149–159.Suche in Google Scholar

[18] Galewski, M.: On variational impulsive boundary value problems, Cent. Eur. J. Math. 10 (2012), 1969–1980.10.2478/s11533-012-0084-9Suche in Google Scholar

[19] Li, J.—Nieto, J. J.—Shen, J.: Impulsive periodic boundary value problems of first-order differential equations, J. Math. Anal. Appl. 325 (2007), 226–236.10.1016/j.jmaa.2005.04.005Suche in Google Scholar

[20] Li, P.—Wu, Y.: Triple positive solutions for nth-order impulsive differential equations with integral boundary conditions and p-Laplacian. Results Math. 61 (2012), 401–419.10.1007/s00025-011-0125-xSuche in Google Scholar

[21] Liang, S.—Zhang, J: The existence of countably many positive solutions for some nonlinear singular three-point impulsive boundary value problems, Nonlinear Anal. 71 (2009), 4588–4597.10.1016/j.na.2009.03.016Suche in Google Scholar

[22] Nieto, J. J.: Basic theory for nonresonance impulsive periodic problems of first order, J. Math. Anal. Appl. 205 (1997), 423–433.10.1006/jmaa.1997.5207Suche in Google Scholar

[23] Nieto, J. J.—O’Regan, D.: Variational approach to impulsive differential equations, Nonlinear Anal. Real World Appl. 10 (2009), 680–690.10.1016/j.nonrwa.2007.10.022Suche in Google Scholar

[24] Polášek, V.: Periodic BVP with ϕ-Laplacian and impulses, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 44 (2005), 131–150.Suche in Google Scholar

[25] Rachůnková, I.—Rachůnek, L.: First-order nonlinear differential equations with state-dependent impulses, Bound. Value Probl. 2013 (2013), 1–18. (Article ID 195)10.1186/1687-2770-2013-1Suche in Google Scholar

[26] Rachůnková, I.—Tomeček, J.: Existence principle for BVPs with state-dependent impulses, Topol. Methods Nonlinear Anal. 44 (2014), 349–368.10.12775/TMNA.2014.050Suche in Google Scholar

[27] Rachůnková, I.—Tomeček, J.: A new approach to BVPs with state-dependent impulses, Bound. Value Probl. 2013 (2013), 1–13. (Article ID 22)10.1186/1687-2770-2013-22Suche in Google Scholar

[28] Rachůnková, I.—Tomeček, J.: Existence principle for higher order nonlinear differential equations with state-dependent impulses via fixed point theorem, Bound. Value Probl. 2014 (2014), 1–15. (Article ID 118)10.1186/1687-2770-2014-118Suche in Google Scholar

[29] Rachůnková, I.—Tomeček, J.: Fixed point problem associated with state-dependent impulsive boundary value problems, Bound. Value Probl. 2014 (2014) 1–17. (Article ID 172)10.1063/1.4912444Suche in Google Scholar

[30] Rachůnková, I.—Tomeček, J.: Second order BVPs with state dependent impulses via lower and upper functions, Cent. Eur. J. Math. 12 (2014), 128–140.10.2478/s11533-013-0324-7Suche in Google Scholar

[31] Rachůnková, I.—Tvrdý, M.: Second-order periodic problem with ϕ-Laplacian and impulses, Nonlinear Anal. 63 (2005), e257–e266.10.1016/j.na.2004.09.017Suche in Google Scholar

[32] Samoilenko, A. M.—Perestyuk, N. A.: Impulsive Differential Equations, World Scientific, Singapore, 1995.10.1142/2892Suche in Google Scholar

[33] Teng, K.—Zhang, C.: Existence of solution to boundary value problem for impulsive differential equations, Nonlinear Anal. Real World Appl. 11 (2010), 4431–4441.10.1016/j.nonrwa.2010.05.026Suche in Google Scholar

[34] Tian, Y.—Ge, W.: Multiple positive solutions of second-order Sturm-Liouville boundary value problems for impulsive differential equations, Rocky Mountain J. Math. 40 (2010), 643–672.10.1216/RMJ-2010-40-2-643Suche in Google Scholar

[35] Wang, L.—Ge, W.: Infinitely many solutions of a second-order p-Laplacian problem with impulsive conditions, Appl. Math. 55 (2010), 405–418.10.1007/s10492-010-0015-7Suche in Google Scholar

[36] Wang, L.—Pei, M.: Infinitely many solutions of a Sturm-Liouville system with impulses, J. Appl. Math. Comput. 35 (2011), 577–593.10.1007/s12190-010-0379-6Suche in Google Scholar

[37] Xu, J.—Kang, P.—Wei, Z.: Singular multipoint impulsive boundary value problem with p-Laplacian operator, J. Appl. Math. Comput. 30 (2009), 105–120.10.1007/s12190-008-0160-2Suche in Google Scholar

[38] Zhang, D.—Dai, B.: Existence of solutions for nonlinear impulsive differential equations with Dirichlet boundary conditions, Math. Comput. Modelling 53 (2011), 1154–1161.10.1016/j.mcm.2010.11.082Suche in Google Scholar

Received: 2014-12-6
Accepted: 2015-5-16
Published Online: 2017-4-28
Published in Print: 2017-4-25

© 2017 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. 10.1515/ms-2015-0200
  2. Zero-divisor graphs of lower dismantlable lattices I
  3. Some results on the intersection graph of submodules of a module
  4. Class number parities of compositum of quadratic function fields
  5. Examples of beurling prime systems
  6. Connection between multiplication theorem for Bernoulli polynomials and first factor hp
  7. On permutational invariance of the metric discrepancy results
  8. Evaluation of sums containing triple aerated generalized Fibonomial coefficients
  9. Linear algebraic proof of Wigner theorem and its consequences
  10. A note on groups with finite conjugacy classes of subnormal subgroups
  11. Groups with the same complex group algebras as some extensions of psl(2, pn)
  12. Klee-Phelps convex groupoids
  13. On analytic functions with generalized bounded Mocanu variation in conic domain with complex order
  14. Weak interpolation for the lipschitz class
  15. Generalized Padé approximants for plane condenser and distribution of points
  16. Three-variable symmetric and antisymmetric exponential functions and orthogonal polynomials
  17. Positive solutions of nonlocal integral BVPS for the nonlinear coupled system involving high-order fractional differential
  18. Existence of positive solutions for a nonlinear nth-order m-point p-Laplacian impulsive boundary value problem
  19. Dirichlet boundary value problem for differential equation with ϕ-Laplacian and state-dependent impulses
  20. On the oscillation of certain third order nonlinear dynamic equations with a nonlinear damping term
  21. Homoclinic solutions for ordinary (q, p)-Laplacian systems with a coercive potential
  22. Semi-equivelar maps on the torus and the Klein bottle with few vertices
  23. A problem considered by Friedlander & Iwaniec and the discrete Hardy-Littlewood method
Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2016-0283/pdf
Button zum nach oben scrollen