Startseite On permutational invariance of the metric discrepancy results
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On permutational invariance of the metric discrepancy results

  • Katusi Fukuyama EMAIL logo und Yutaro Noda
Veröffentlicht/Copyright: 28. April 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let {nk} be a sequence of non-zero real numbers. We prove that the law of the iterated logarithm for discrepancies of the sequence {nkx} is permutational invariant if |nk+1/nk| → ∞ is satisfied.

MSC 2010: 11K38; 42A55; 60F15

The first author is supported by KAKENHI 24340017 and 24340020.



(Communicated by Stanislav Jakubec)


References

[1] Aistleitner, C.—Berkes, I.—Tichy, R.: Lacunary Sequences and Permutations. Dependence in Probability, Analysis and Number Theory, A volume in memory of Walter Philipp, (Eds. I. Berkes, R. Bradley, H. Dehling, M. Peligrad, and R. Tichy), Kendrick press, 2010, pp. 35–49.Suche in Google Scholar

[2] Aistleitner, C.—Berkes, I.—Tichy, R.: On the asymptotic behaviour of weakly lacunary series, Proc. Amer. Math. Soc. 139 (2011), 2505–2517.10.1090/S0002-9939-2011-10682-8Suche in Google Scholar

[3] Aistleitner, C.—Berkes, I.—Tichy, R.: On the law of the iterated logarithm for permuted lacunary sequences, Proc. Steklov Inst. Math. 276 (2012), 3–20.10.1134/S0081543812010026Suche in Google Scholar

[4] Berkes, I.: On Strassen’s version of the log log law for multiplicative systems, Studia Sci. Math. Hungar. 8 (1973), 425–431.Suche in Google Scholar

[5] Dhompongsa, S.: Almost sure invariance principles for the empirical process of lacunary sequences, Acta Math. Hungar. 49 (1987), 83–102.10.1007/BF01956313Suche in Google Scholar

[6] Erdös, P.: Problems and results on diophantine approximations, Compos. Math. 16 (1964), 52–65.10.1007/BFb0074258Suche in Google Scholar

[7] Fukuyama, K.: The law of the iterated logarithm for discrepancies of θn x, Acta Math. Hungar. 118 (2008), 155–170.10.1007/s10474-007-6201-8Suche in Google Scholar

[8] Fukuyama, K.: The law of the iterated logarithm for the discrepancies of a permutation of nk x, Acta Math. Hungar. 123 (2009), 121–125.10.1007/s10474-008-8067-9Suche in Google Scholar

[9] Fukuyama, K.: A Central Limit Theorem and a Metric Discrepancy Result for Sequence with Bounded Gaps. Dependence in Probability, Analysis and Number Theory, A volume in memory of Walter Philipp, (Eds. I. Berkes, R. Bradley, H. Dehling, M. Peligrad, and R. Tichy), Kendrick press, 2010, pp. 233–246.Suche in Google Scholar

[10] Fukuyama, K.: Metric discrepancy results for alternating geometric progressions, Monatsh. Math. 171 (2013), 33–63.10.1007/s00605-012-0419-4Suche in Google Scholar

[11] Fukuyama, K.: A metric discrepancy result for the sequence of powers of minus two, Indag. Math. (NS) 25 (2014), 487–504.10.1016/j.indag.2013.12.002Suche in Google Scholar

[12] Fukuyama, K.—Mitsuhata, Y.: Bounded law of the iterated logarithm for discrepancies of permutations of lacunary sequences, Summer School on the Theory of Uniform Distribution, RIMS Kôkyûroku Bessatsu, B29 (2012), 65–88.Suche in Google Scholar

[13] Kuipers, L.—Niederreiter, H.: Uniform Distribution of Sequences, Wiley-Interscience, New York, 1974; Dover, New York, 2006.Suche in Google Scholar

[14] Philipp, W.: Limit theorems for lacunary series and uniform distribution mod 1, Acta Arith. 26 (1975), 241–251.10.4064/aa-26-3-241-251Suche in Google Scholar

[15] Philipp, W.: A functional law of the iterated logarithm for empirical distribution functions of weakly dependent random variables, Ann. Probab. 5 (1977), 319–350.10.1214/aop/1176995795Suche in Google Scholar

[16] Takahashi, S.: An asymptotic property of a gap sequence, Proc. Japan Acad. 38 (1962), 101–104.10.3792/pja/1195523464Suche in Google Scholar

Received: 2014-10-22
Accepted: 2015-5-27
Published Online: 2017-4-28
Published in Print: 2017-4-25

© 2017 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. 10.1515/ms-2015-0200
  2. Zero-divisor graphs of lower dismantlable lattices I
  3. Some results on the intersection graph of submodules of a module
  4. Class number parities of compositum of quadratic function fields
  5. Examples of beurling prime systems
  6. Connection between multiplication theorem for Bernoulli polynomials and first factor hp
  7. On permutational invariance of the metric discrepancy results
  8. Evaluation of sums containing triple aerated generalized Fibonomial coefficients
  9. Linear algebraic proof of Wigner theorem and its consequences
  10. A note on groups with finite conjugacy classes of subnormal subgroups
  11. Groups with the same complex group algebras as some extensions of psl(2, pn)
  12. Klee-Phelps convex groupoids
  13. On analytic functions with generalized bounded Mocanu variation in conic domain with complex order
  14. Weak interpolation for the lipschitz class
  15. Generalized Padé approximants for plane condenser and distribution of points
  16. Three-variable symmetric and antisymmetric exponential functions and orthogonal polynomials
  17. Positive solutions of nonlocal integral BVPS for the nonlinear coupled system involving high-order fractional differential
  18. Existence of positive solutions for a nonlinear nth-order m-point p-Laplacian impulsive boundary value problem
  19. Dirichlet boundary value problem for differential equation with ϕ-Laplacian and state-dependent impulses
  20. On the oscillation of certain third order nonlinear dynamic equations with a nonlinear damping term
  21. Homoclinic solutions for ordinary (q, p)-Laplacian systems with a coercive potential
  22. Semi-equivelar maps on the torus and the Klein bottle with few vertices
  23. A problem considered by Friedlander & Iwaniec and the discrete Hardy-Littlewood method
Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2016-0271/html
Button zum nach oben scrollen