Startseite Mathematik Examples of beurling prime systems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Examples of beurling prime systems

  • Faez A Al-Maamori EMAIL logo
Veröffentlicht/Copyright: 28. April 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A generalized prime system 𝓟 is a sequence of positive reals p1, p2, p3, … satisfying 1 < p1p2 ≤ ⋯ ≤ pn ≤ ⋯ and for which pn → ∞ as n → ∞. The {pn} are called generalized primes (or Beurling primes) with the products p1a1p2a2pkak (where k ∈ ℕ and a1, a2, ⋯, ak ∈ ℕ ∪ {0}) forming the generalized integers (or Beurling integers).

In this article we generalise Balanzario’s result [BALANZARIO, E.: An example in Beurling’s theory of primes, Acta Arith. 87 (1998), 121–139] by adapting his method to show that for any 0 < α < 1 there is a continuous g-prime system for which

ΠP(x)=li(x)+O(xe(logx)α),(0.1)

and

NP(x)=ρx+Ω±(xec(logx)β),(0.2)

We use the method developed by Diamond, Montgomery and Vorhauer [DIAMOND, H.—MONTGOMERY, H.—VORHAUER, U.: Beurling primes with large oscillation, Math. Ann. 334 (2006), 1–36] and Zhang [ZHANG, W.: Beurling primes with RH and Beurling primes with large oscillation, Math. Ann. 337 (2007), 671–704] to prove (by using some measure theoretical results) that there is a discrete system of Beurling primes satisfying (0.1) and (0.2) which is similar to the continuous system.

Finding discrete example is typically more challenging since one cannot control the various growth rates (of π𝓟(x), 𝓝𝓟(x) and ζ𝓟(s)) so easily.

MSC 2010: Primary 11N80

(Communicated by Federico Pellarin)


References

[1] Balanzario, E.: An example in Beurling’s theory of primes, Acta Arith. 87 (1998), 121–139.10.4064/aa-87-2-121-139Suche in Google Scholar

[2] Bateman, P.—Diamond, H.: Introduction to Analytic Number Theory – An Introduction Course, World Scientific, 2004.10.1142/5605Suche in Google Scholar

[3] Bateman, P.—Diamond, H.: Asymptotic Distribution of Beurling’s Generalized Prime Numbers. In: Studies in Number Theory, Mathematical Association of America Studies, Vol. 6 (W.J. Leveque, ed.), 1969, pp. 152–210.Suche in Google Scholar

[4] Beurling, A.: Analyse de la loi asymptotique de la distribution des nombres premiers generalises, Acta Arith. 68 (1937), 255–291.10.1007/BF02546666Suche in Google Scholar

[5] Diamond, H.: A set of generalized numbers showing Beurling’s theorem to be sharp, Illinois J. Math. 14 (1970), 29–34.10.1215/ijm/1256053296Suche in Google Scholar

[6] Diamond, H.: Asymptotic distribution of Beurling’s generalized integers, Illinois J. Math. 14 (1970), 12–28.10.1215/ijm/1256053295Suche in Google Scholar

[7] Diamond, H.: When do Beurling’s generalized integers have density?, J. Reine Angew. Math. 295 (1977), 22–39.10.1515/crll.1977.295.22Suche in Google Scholar

[8] Diamond, H.: The prime number theorem for Beurling’s generalized numbers, J. Number Theory 1 (1969), 200–207.10.1016/0022-314X(69)90038-9Suche in Google Scholar

[9] Diamond, H.—Mongomery, H.—Vorhauer, U.: Beurling primes with large oscillation, Math. Ann. 334 (2006), 1–36.10.1007/s00208-005-0638-2Suche in Google Scholar

[10] Hilberdink, T.: Generalised prime systems with periodic integer counting function, Acta Arith. 152 (2012), 217–241.10.4064/aa152-3-1Suche in Google Scholar

[11] Kahane, J.: Sur les nombres premiers généralisés de Beurling. Preuve d’une conjecture de Bateman et Diamond, J. Théor. Nombres Bordeaux 9 (1997), 251–266.10.5802/jtnb.201Suche in Google Scholar

[12] Lagarias, J.: Beurling generalized integers with the Delone property, J. Forum Math. 11 (1999), 295–312.10.1515/FORM.1999.295Suche in Google Scholar

[13] Landau, A.: Neuer beweis des primzahlsatzes und beweis des primidealsatzes, Math. Ann. 56 (1903), 645–670.10.1007/BF01444310Suche in Google Scholar

[14] Malliavin, P.: Sur le reste de la loi asymptotique de repartition des nombres premiers generalises de Beurling, Acta Math. 106 (1961), 281–298.10.1007/BF02545789Suche in Google Scholar

[15] Nyman, B.: A general prime number theorem, Acta Math. 81 (1949), 299–307.10.1007/BF02395024Suche in Google Scholar

[16] Zhang, W.: Beurling primes with RH and Beurling primes with large oscillation, Math. Ann. 337 (2007), 671–704.10.1007/s00208-006-0051-5Suche in Google Scholar

Received: 2014-8-6
Accepted: 2015-1-11
Published Online: 2017-4-28
Published in Print: 2017-4-25

© 2017 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. 10.1515/ms-2015-0200
  2. Zero-divisor graphs of lower dismantlable lattices I
  3. Some results on the intersection graph of submodules of a module
  4. Class number parities of compositum of quadratic function fields
  5. Examples of beurling prime systems
  6. Connection between multiplication theorem for Bernoulli polynomials and first factor hp
  7. On permutational invariance of the metric discrepancy results
  8. Evaluation of sums containing triple aerated generalized Fibonomial coefficients
  9. Linear algebraic proof of Wigner theorem and its consequences
  10. A note on groups with finite conjugacy classes of subnormal subgroups
  11. Groups with the same complex group algebras as some extensions of psl(2, pn)
  12. Klee-Phelps convex groupoids
  13. On analytic functions with generalized bounded Mocanu variation in conic domain with complex order
  14. Weak interpolation for the lipschitz class
  15. Generalized Padé approximants for plane condenser and distribution of points
  16. Three-variable symmetric and antisymmetric exponential functions and orthogonal polynomials
  17. Positive solutions of nonlocal integral BVPS for the nonlinear coupled system involving high-order fractional differential
  18. Existence of positive solutions for a nonlinear nth-order m-point p-Laplacian impulsive boundary value problem
  19. Dirichlet boundary value problem for differential equation with ϕ-Laplacian and state-dependent impulses
  20. On the oscillation of certain third order nonlinear dynamic equations with a nonlinear damping term
  21. Homoclinic solutions for ordinary (q, p)-Laplacian systems with a coercive potential
  22. Semi-equivelar maps on the torus and the Klein bottle with few vertices
  23. A problem considered by Friedlander & Iwaniec and the discrete Hardy-Littlewood method
Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2016-0269/pdf
Button zum nach oben scrollen