Startseite Mathematik Some inequalities of trigonometric approximation in weighted Orlicz spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some inequalities of trigonometric approximation in weighted Orlicz spaces

  • Ramazan Akgün EMAIL logo
Veröffentlicht/Copyright: 29. April 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the present work, we proved a refined direct theorem and an exact inverse theorem of trigonometric approximation in Orlicz spaces with weights satisfying some Muckenhoupt’s Ap condition. As a consequence, refined Marchaud inequality and its inverse are obtained.


This work was partially supported by TüB\.ITAK, The Scientific and Technological Research Council of Turkey, 2219 Grant, No. 2012-1-9246 and by MTM2011-27637 and by Balikesir University Scientific Research Project 1.2015.0015.


  1. This paper has been communicated by Ján Borsík

References

[1] Akgun, R.: Sharp Jackson and converse theorems of trigonometric approximation in weighted Lebesgue spaces, Proc. A. Razmadze Math. Inst. 152 (2010), 1–18.10.15352/bjma/1313362981Suche in Google Scholar

[2] Akgun, R.—Israfilov, D. M.: Simultaneous and converse approximation theorems in weighted Orlicz spaces, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 13–28.10.36045/bbms/1267798496Suche in Google Scholar

[3] Akgun, R.—Israfilov, D. M.: Approximation in weighted Orlicz spaces, Math. Slovaca 61 (2011), 601–618.10.2478/s12175-011-0031-4Suche in Google Scholar

[4] Bari, N. K.—Stechkin, S. B.: Best approximations and differential properties of two conjugate functions, Trudy Moskov. Mat. Obsch. 5 (1956), 483–522 (Russian).Suche in Google Scholar

[5] Butzer, P. L.—Dyckhoff, H.—Görlich, E.—stens, R. L.: Best trigonometric approximation, fractional order derivatives and Lipschitz classes, Canad. J. Math. 29 (1977), 781–793.10.4153/CJM-1977-081-6Suche in Google Scholar

[6] Chan, L. Y.—Chen, Y.M.—Liu, M. C.: Some properties of asymptotic functions, Studia Math. 67 (1980), 65–72.10.4064/sm-67-1-65-72Suche in Google Scholar

[7] Chen, Y. M.: Theorems of asymptotic approximation, Math. Ann. 140 (1960), 360–407.10.1007/BF01361220Suche in Google Scholar

[8] Chen, Y. M.: On two-functional spaces, Studia Math. 24 (1964), 61–88.10.4064/sm-24-1-61-88Suche in Google Scholar

[9] Gadjieva, E. A.: Investigation of the properties of functions with quasimonotone Fourier coefficients in generalized Nikolskiĭ-Besov spaces. Author’s summary of PhD dissertation, Tbilisi, 1986 (Russian).Suche in Google Scholar

[10] Guven, A.—Israfilov, D. M.: Improved inverse theorems in weighted Lebesgue and Smirnov spaces, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 681–692.10.36045/bbms/1195157136Suche in Google Scholar

[11] Guven, A.—Israfilov, D. M.: On approximation in weighted Orlicz spaces, Math. Slovaca 62 (2012), 77–86.10.2478/s12175-011-0073-7Suche in Google Scholar

[12] Hao, C.—Kaminska, A.—Tomczak-Jaegermann, N.: Orlicz spaces with convexity or concavity constant one, J. Math. Anal. Appl. 320 (2006), 303–321.10.1016/j.jmaa.2005.06.078Suche in Google Scholar

[13] Israfilov, D. M.—Guven, A.: Approximation by trigonometric polynomials in weighted Orlicz spaces, Studia Math. 174 (2006), 147–168.10.4064/sm174-2-3Suche in Google Scholar

[14] Khabazi, M.: The mean convergence of trigonometric Fourier series in weighted Orlicz classes, Proc. A. Razmadze Math. Inst. 129 (2002), 65–75.Suche in Google Scholar

[15] Kokilashvili, V.—Krbec, M.: Weighted inequalities in Lorentz and Orlicz spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 1991.10.1142/1367Suche in Google Scholar

[16] Kokilashvili, V.—Yildirir, Y. E.: The estimation of high order generalized modulus of continuity in Lωp, Proc. A. Razmadze Math. Inst. 143 (2007), 135–137.Suche in Google Scholar

[17] Kokilashvili, V.—Yildirir, Y. E.: On the approximation in weighted Lebesgue spaces, Proc. A. Razmadze Math. Inst. 143 (2007), 103–113.Suche in Google Scholar

[18] Kokilashvili, V.—Yildirir, Y. E.: On the approximation by trigonometric polynomials in weighted Lorentz spaces, J. Funct. Spaces Appl. 8 (2010), 67–86.10.1155/2010/372106Suche in Google Scholar

[19] Konyushkov, A. A.: Best approximations by trigonometric polynomials and Fourier coefficients, Mat. Sb. (N.S.) 44(86) (1958), 53–84 (Russian).Suche in Google Scholar

[20] Kurtz, D. S.: Littlewood-Paley and multiplier theorems on weighted Lp spaces, Trans. Amer. Math. Soc. 259 (1980), 235–254.10.2307/1998156Suche in Google Scholar

[21] Ky, N. X.: On approximation by trigonometric polynomials in Lup-spaces, Studia Sci. Math. Hungar. 28 (1993), 183–188.Suche in Google Scholar

[22] Ky, N. X.: Modulus of mean smoothness and approximation with Ap-weights, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 40 (1997), 37–48.Suche in Google Scholar

[23] Ky, N. X.: An Alexits’s lemma and its applications in approximation theory. In: Functions, Series, Operators, Budapest, 1999, János Bolyai Math. Soc., Budapest, 2002, pp. 287–296.Suche in Google Scholar

[24] Potapov, M. K.—Simonov, B. V.: On the interrelation of the generalized Besov-Nikolskii and Weyl-Nikolskii classes of functions, Anal. Math. 22 (1996), 299–316.10.1007/BF01904789Suche in Google Scholar

[25] Simonov, B. V.—Tikhonov, S. Y.: Embedding theorems in the constructive theory of approximations, Sb. Math. 199 (2008), 1367–1407.10.1070/SM2008v199n09ABEH003964Suche in Google Scholar

[26] Stechkin, S. B.: On the absolute convergence of Fourier series, Izv. Akad. Nauk. SSSR. Ser. Mat. 17 (1953), 499–512 (Russian).Suche in Google Scholar

[27] Taberski, R.: Differences, moduli and derivatives of fractional orders, Comment. Math. Prace Mat. 19 (1976/1977), 389–400.Suche in Google Scholar

[28] Timan, M. F.: Inverse theorems of the constructive theory of functions in Lp spaces 1 ≤ p ≤ ∞, Mat. Sb. (N.S.) 46(88) (1958), 125–132 (Russian).Suche in Google Scholar

[29] Timan, M. F.: On Jackson’s theorem in Lp spaces, Ukrainian Math. J. 18 (1966), 134–137 (Russian).10.1007/BF02537726Suche in Google Scholar

[30] Yildirir, Y. E.—Israfilov, D. M.: Approximation theorems in weighted Lorentz spaces, Carpathian J. Math. 26 (2010), 108–119.Suche in Google Scholar

[31] Zygmund, A.: Trigonometric series, Vols. I, II (2nd ed.), Cambridge University Press, New York, 1959.Suche in Google Scholar

Received: 2012-9-29
Accepted: 2013-6-4
Published Online: 2016-4-29
Published in Print: 2016-2-1

© 2016 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Research Article
  2. Prof. RNDr. Ján Jakubík, DrSc. passed away
  3. Research Article
  4. On the number of slim, semimodular lattices
  5. Research Article
  6. Quantum computational algebra with a non-commutative generalization
  7. Research Article
  8. Lexico groups and direct products of lattice ordered groups
  9. Research Article
  10. Values of limit periodic sequences and functions
  11. Research Article
  12. On representation of quasi-Hopf group coalgebras
  13. Research Article
  14. On the q-Bernstein polynomials of the logarithmic function in the case q > 1
  15. Research Article
  16. On some modification of Darboux property
  17. Research Article
  18. Separating sets by peripherally continuous functions
  19. Research Article
  20. Persistence and extinction of a stochastic delay predator-prey model in a polluted environment
  21. Research Article
  22. On O’Malley preponderantly continuous functions
  23. Research Article
  24. Inequalities for the normalized Jensen functional with applications
  25. Research Article
  26. Majorization of starlike and convex functions of complex order involving linear operators
  27. Research Article
  28. Fekete–Szegö problem for some starlike functions related to shell-like curves
  29. Research Article
  30. Central functions for classes of concave univalent functions
  31. Research Article
  32. Inclusion properties for classes of analytic functions associated with conic domains
  33. Research Article
  34. Uniqueness of meromorphic functions and nonlinear differential polynomials sharing a nonzero polynomial
  35. Research Article
  36. Solutions and constrained null-controllability for a differential-difference equation
  37. Research Article
  38. Oscillation criteria for quasi-linear neutral delay dynamic equations on time scale
  39. Research Article
  40. Time periodic solutions for a sixth order nonlinear parabolic equation
  41. Research Article
  42. Some inequalities of trigonometric approximation in weighted Orlicz spaces
  43. Research Article
  44. Summation methods applied to Voronovskaya-type theorems for the partial sums of Fourier series and for Fejér operators
  45. Research Article
  46. Dichotomies for Orlicz spaces
  47. Research Article
  48. On freely generated semigraph C*-algebras
  49. Research Article
  50. Operators with a given part of the numerical range
  51. Research Article
  52. Characterization of quasi-continuity of multifunctions of two variables
  53. Research Paper
  54. Confidence regions in singular weakly nonlinear regression models with constraints
  55. Research Article
  56. Global stability of an SEI model for plant diseases
Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0130/pdf?lang=de
Button zum nach oben scrollen