Startseite On the q-Bernstein polynomials of the logarithmic function in the case q > 1
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the q-Bernstein polynomials of the logarithmic function in the case q > 1

  • Sofiya Ostrovska EMAIL logo
Veröffentlicht/Copyright: 26. April 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The q-Bernstein basis used to construct the q-Bernstein polynomials is an extension of the Bernstein basis related to the q-binomial probability distribution. This distribution plays a profound role in the q-boson operator calculus. In the case q > 1, q-Bernstein basic polynomials on [0, 1] combine the fast increase in magnitude with sign oscillations. This seriously complicates the study of q-Bernstein polynomials in the case of q > 1.

The aim of this paper is to present new results related to the q-Bernstein polynomials Bn, q of discontinuous functions in the case q > 1. The behavior of polynomials Bn, q(f; x) for functions f possessing a logarithmic singularity at 0 has been examined.

  1. This paper has been communicated by Stanisława Kanas.

Acknowledgement

I would like to express my sincere gratitude to Mr. P. Danesh from Atilim University Academic Writing and Advisory Centre for his help in the preparation of the manuscript.

References

[1] Andrews, G. E.—Askey, R.—Roy, R.: Special Functions, Cambridge Univ. Press., Cambridge, 1999.10.1017/CBO9781107325937Suche in Google Scholar

[2] Bernstein, S. N.: Demonstration du theoreme de Weierstrass fondee sur la calcul des probabilities, Commun. Soc. Math. Charkow Ser. 2 13(1912), 1-2.Suche in Google Scholar

[3] Biederharn, L. C: The quantum group SUq(2) and a q-analogue of the boson operators, J. Phys. A Math. Gen. 22(1989), 873-878.10.1088/0305-4470/22/18/004Suche in Google Scholar

[4] Charalambides, C. A.: The q-Bernstein basis as a q-binomial distribution, J. Statist. Plann. Inference 140(2010), 2184-2190.10.1016/j.jspi.2010.01.014Suche in Google Scholar

[5] Jing, S.: The q-deformed binomial distribution and its asymptotic behaviour, J. Phys. A Math. Gen. 27 (1994), 493-499.10.1088/0305-4470/27/2/031Suche in Google Scholar

[6] Lorentz, G. G.: Bernstein Polynomials, Chelsea, New York, 1986.Suche in Google Scholar

[7] Mahmudov, N.: The moments for q-Bernstein operators in the case 0 < q < 1, Numer. Algorithms 53 (2010), 439-450.10.1007/s11075-009-9312-1Suche in Google Scholar

[8] Novikov, I. Ya.: Asymptotics of the roots of Bernstein polynomials used in the construction of modified Daubechies wavelets, Math. Notes 71(2002), 217-229.10.1023/A:1013959231555Suche in Google Scholar

[9] Ostrovska, S.: The first decade of the q-Bernstein polynomials: results and perspectives, J. Math. Anal. Approx. Theory 2 (2007), 35-51.Suche in Google Scholar

[10] Ostrovska, S.: The approximation of logarithmic function by q-Bernstein polynomials in the case q > 1, Numer. Algorithms 44(2007), 69-82.10.1007/s11075-007-9081-7Suche in Google Scholar

[11] Ostrovska, S.—Ozban, A. Y.: On the sets of convergence for sequences of the q-Bernstein polynomials with q > 1, Abstr. Appl. Anal. 2012(2012), Article ID 185948, 19 pp.10.1155/2012/185948Suche in Google Scholar

[12] Phillips, G. M.: Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4 (1997), 511-518.Suche in Google Scholar

[13] Sabancigil, P.: Higher Order Generalization of q-Bernstein Operators, J. Comput. Anal. Appl. 12 (2010), 821-827.Suche in Google Scholar

[14] Videnskii, V. S.: On some classes of q-parametric positive operators. In: Oper. Theory Adv. Appl. 158, Birkhauser/Springer Basel AG, Basel, 2005, pp. 213-222.10.1007/3-7643-7340-7_15Suche in Google Scholar

[15] Wang, H.—wu, X. Z.: Saturation of convergence for q-Bernstein polynomials in the case q > 1, J. Math. Anal. Appl. 337(2008), 744-750.10.1016/j.jmaa.2007.04.014Suche in Google Scholar

[16] Wu, Z.: The saturation of convergence on the interval [0,1] for the q-Bernstein polynomials in the case q > 1, J. Math. Anal. Appl. 357(2009), 137-141.10.1016/j.jmaa.2009.04.003Suche in Google Scholar

[17] Zeng, X. M.—Cheng, F. H.: First order absolute moment of Meyer-Konig and Zeller operators and their approximation for some absolutely continuous functions, Math. Slovaca 61 (2011), 635—644.10.2478/s12175-011-0033-2Suche in Google Scholar

Received: 2012-10-22
Accepted: 2013-8-1
Published Online: 2016-4-26
Published in Print: 2016-2-1

© 2016 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Research Article
  2. Prof. RNDr. Ján Jakubík, DrSc. passed away
  3. Research Article
  4. On the number of slim, semimodular lattices
  5. Research Article
  6. Quantum computational algebra with a non-commutative generalization
  7. Research Article
  8. Lexico groups and direct products of lattice ordered groups
  9. Research Article
  10. Values of limit periodic sequences and functions
  11. Research Article
  12. On representation of quasi-Hopf group coalgebras
  13. Research Article
  14. On the q-Bernstein polynomials of the logarithmic function in the case q > 1
  15. Research Article
  16. On some modification of Darboux property
  17. Research Article
  18. Separating sets by peripherally continuous functions
  19. Research Article
  20. Persistence and extinction of a stochastic delay predator-prey model in a polluted environment
  21. Research Article
  22. On O’Malley preponderantly continuous functions
  23. Research Article
  24. Inequalities for the normalized Jensen functional with applications
  25. Research Article
  26. Majorization of starlike and convex functions of complex order involving linear operators
  27. Research Article
  28. Fekete–Szegö problem for some starlike functions related to shell-like curves
  29. Research Article
  30. Central functions for classes of concave univalent functions
  31. Research Article
  32. Inclusion properties for classes of analytic functions associated with conic domains
  33. Research Article
  34. Uniqueness of meromorphic functions and nonlinear differential polynomials sharing a nonzero polynomial
  35. Research Article
  36. Solutions and constrained null-controllability for a differential-difference equation
  37. Research Article
  38. Oscillation criteria for quasi-linear neutral delay dynamic equations on time scale
  39. Research Article
  40. Time periodic solutions for a sixth order nonlinear parabolic equation
  41. Research Article
  42. Some inequalities of trigonometric approximation in weighted Orlicz spaces
  43. Research Article
  44. Summation methods applied to Voronovskaya-type theorems for the partial sums of Fourier series and for Fejér operators
  45. Research Article
  46. Dichotomies for Orlicz spaces
  47. Research Article
  48. On freely generated semigraph C*-algebras
  49. Research Article
  50. Operators with a given part of the numerical range
  51. Research Article
  52. Characterization of quasi-continuity of multifunctions of two variables
  53. Research Paper
  54. Confidence regions in singular weakly nonlinear regression models with constraints
  55. Research Article
  56. Global stability of an SEI model for plant diseases
Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0116/html
Button zum nach oben scrollen