Startseite Mathematik Notes on the Product of Locales
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Notes on the Product of Locales

  • Jorge Picado EMAIL logo und Aleš Pultr
Veröffentlicht/Copyright: 22. Mai 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Products of locales (generalized spaces) are coproducts of frames. Because of the algebraic nature of the latter they are often viewed as algebraic objects without much topological connotation. In this paper we first analyze the frame construction emphasizing its tensor product carrier. Then we show how it can be viewed topologically, that is, in the sum-of-the-open-rectangles perspective. The main aim is to present the product from different points of view, as an algebraic and a geometric object, and persuade the reader that both of them are fairly transparent.

References

[1] BANASCHEWSKI, B.-NELSON, E.: Tensor products and bimorphisms, Canad. Math. Bull. 19 (1976), 385-402.10.4153/CMB-1976-060-2Suche in Google Scholar

[2] BANASCHEWSKI, B.-PULTR, A.: Cauchy points of metric locales, Canad. J. Math. 41 (1989), 830-854.10.4153/CJM-1989-038-0Suche in Google Scholar

[3] BANASCHEWSKI, B.-PULTR, A.: Distributive algebras in linear categories, Algebra Universalis 30 (1993), 101-118.10.1007/BF01196553Suche in Google Scholar

[4] BORCEUX, F.: Handbook of Categorical Algebra. Encyclopedia Math. Appl. 1, Cambridge University Press, Cambrige, 1994.10.1017/CBO9780511525858Suche in Google Scholar

[5] DOWKER, C. H.-STRAUSS, D.: Sums in the category of frames, Houston J. Math. 3 (1977), 17-32.Suche in Google Scholar

[6] HOFMANN, K. H.-LAWSON, J. D.: The spectral theory of distributive continuous lattices, Trans. Amer. Math. Soc. 246 (1978), 285-310.10.1090/S0002-9947-1978-0515540-7Suche in Google Scholar

[7] ISBELL, J. R.: Atomless parts of spaces, Math. Scand. 31 (1972), 5-32.10.7146/math.scand.a-11409Suche in Google Scholar

[8] ISBELL, J. R.: Product spaces in locales, Proc. Amer. Math. Soc. 81 (1981), 116-118.10.1090/S0002-9939-1981-0589150-5Suche in Google Scholar

[9] ISBELL, J. R.-KŘÍŽ, I.-PULTR, A.-ROSICKÝ, J.: Remarks on localic groups. In: Categorical Algebra and its Applications (F. Borceux, ed.). Lecture Notes in Math. 1348, Springer, Berlin, pp. 154-172.Suche in Google Scholar

[10] JOHNSTONE, P. T.: Stone Spaces. Cambridge Stud. Adv. Math. 3, Cambridge University Press, Cambridge, 1982.Suche in Google Scholar

[11] JOYAL, A.-TIERNEY, M.: An extension of the Galois theory of Grothendieck. Mem. Amer. Math. Soc. 51 (1984), No. 309.Suche in Google Scholar

[12] KŘÍŽ, I.-PULTR, A.: Products of locally connected locales, Rend. Circ. Mat. Palermo (2) Suppl. 11 (1985), 61-70.Suche in Google Scholar

[13] KŘÍŽ, I.-PULTR, A.: Peculiar behaviour of connected locales, Cah. Topol. Géom. Différ. Catég. 30 (1989), 25-43.Suche in Google Scholar

[14] PICADO, J.: Weil uniformities for frames, Comment. Math. Univ. Carolin. 36 (1995), 357-370.Suche in Google Scholar

[15] PICADO, J.-PULTR, A.: Frames and Locales. Topology without Points. Front. Math. 28, Springer, Basel, 2012.10.1007/978-3-0348-0154-6Suche in Google Scholar

[16] PICADO, J.-PULTR, A.: Entourages, covers and localic groups, Appl. Categ. Structures 21 (2013), 49-66.10.1007/s10485-011-9254-3Suche in Google Scholar

[17] PLEWE, T.: Localic products of spaces, Proc. Lond. Math. Soc. (3) 73 (1996), 642-678.10.1112/plms/s3-73.3.642Suche in Google Scholar

[18] PULTR, A.: Frames. In: Handb. Algebr. 3 (M. Hazewinkel, ed.), Elsevier/North-Holland, Amsterdam, 2003, pp. 791-857.10.1016/S1570-7954(03)80073-6Suche in Google Scholar

[19] PULTR, A.-TOZZI, A.: Completion and coproducts of nearness frames. In: Symposium on Categorical Topology, Univ. Cape Town, Rondebosch, 1999, pp. 177-186. Suche in Google Scholar

Received: 2012-7-12
Accepted: 2012-10-29
Published Online: 2015-5-22
Published in Print: 2015-4-1

© Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 18.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0020/html?lang=de
Button zum nach oben scrollen