Startseite Free Objects and Free Extensions in the Category of Frames
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Free Objects and Free Extensions in the Category of Frames

  • Constantine Tsinakis EMAIL logo
Veröffentlicht/Copyright: 22. Mai 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This article considers free objects and free extensions over posets in the category of frames. Its primary goal is to present novel representations for these objects as subdirect products of certain chains. Constructions for the corresponding objects in the category of bounded distributive lattices are also presented.

References

[1] BALBES, R.-DWINGER, P.: Distributive Lattices, University of Missouri Press, Columbia, MO, 1974.Suche in Google Scholar

[2] BERNAU, S. J.: Free abelian lattice groups, Math. Ann. 180 (1969), 48-59.10.1007/BF01350085Suche in Google Scholar

[3] CRAWLEY, P.-DILWORTH, R. P.: Algebraic Theory of Lattices, Prentice-Hall, Englewood Cliffs, NJ, 1973.Suche in Google Scholar

[4] FRANCHELLO, J. D.: Sublattices of free products of lattice ordered groups, Algebra Universalis 8 (1978), 101-110.10.1007/BF02485375Suche in Google Scholar

[5] JOHNSTONE, P. T.: Stone Spaces, Cambridge University Press, Cambridge, 1982.Suche in Google Scholar

[6] POWELL, W. B.-TSINAKIS, C.: Free products in the class of abelian l-groups, Pacific J. Math. 104 (1983), 429-442.10.2140/pjm.1983.104.429Suche in Google Scholar

[7] POWELL, W. B.-TSINAKIS, C.: The distributive lattice free product as a sublattice of the abelian l-group free product, J. Aust. Math. Soc. 34 (1983), 92-100.10.1017/S1446788700019789Suche in Google Scholar

[8] POWELL, W. B.-TSINAKIS, C.: Free products in varieties of lattice-ordered groups. In: Lattice-Ordered Groups (A. M. W. Glass, W. C. Holland, eds.), D. Reidel, Dordrecht, 1989, pp. 308-327.Suche in Google Scholar

[9] WEINBERG, E. C.: Free lattice-ordered abelian groups, Math. Ann. 151 (1963), 187-199. 10.1007/BF01398232Suche in Google Scholar

Received: 2013-3-11
Accepted: 2013-3-14
Published Online: 2015-5-22
Published in Print: 2015-4-1

© Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0021/html
Button zum nach oben scrollen