Home Mathematics Existence of Ground State Solutions for Hamiltonian Elliptic Systems with Gradient Terms
Article
Licensed
Unlicensed Requires Authentication

Existence of Ground State Solutions for Hamiltonian Elliptic Systems with Gradient Terms

  • Yunjuan Jin EMAIL logo and Minbo Yang
Published/Copyright: March 25, 2015
Become an author with De Gruyter Brill

Abstract

In this paper we consider the following Hamiltonian elliptic terns in RN:

[XXX]

Where V(x) > 0 is a periodic continuous real Function, b̅(x) = (b1....bN) € C1(RN,RN) satisfies the gauge condition div b̅(x) =0, g(x,v), f(x,u) are super- linear at infinity. We establish the existence of ground state solutions without the classical Ambrosetti-Rabinowitz superlinear condition.

References

[1] AMBROSETTI, A.-RABINOWITZ, P. H.: Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.10.1016/0022-1236(73)90051-7Search in Google Scholar

[2] LIU, Z.-WANG, Z. Q.: On the Ambrosetti-Rabinowitz superlinear condition, Adv.Nonlinear Stud. 4 (2004), 561-572.10.1515/ans-2004-0411Search in Google Scholar

[3] SIRAKOV, B.: On the existence of solutions of Hamiltonian elliptic systems in RN, Adv. Differential Equations 5 (2000), 1445-1464.10.57262/ade/1356651229Search in Google Scholar

[4] LI, G. B.-YANG, J. F.: Asymptotically linear elliptic systems, Comm. Partial Differential Equations 29 (2004), 925-954.10.1081/PDE-120037337Search in Google Scholar

[5] HULSHOF, J.-VAN DER VORST, R.: Differential systems with strongly indefinite variational structure, J. Funct. Anal. 114 (1993), 32-58.10.1006/jfan.1993.1062Search in Google Scholar

[6] JEANJEAN, L.: On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on RN, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), 787-809.10.1017/S0308210500013147Search in Google Scholar

[7] DE FIGUEIREDO, D. G.-FELMER, P.: On superquadratic elliptic systems, Trans. Amer. Math. Soc. 343 (1994), 99-116.10.1090/S0002-9947-1994-1214781-2Search in Google Scholar

[8] DE FIGUEIREDO, D. G.-DING, Y. H.: Strongly indefinite functionals and multiple solutions of elliptic systems, Trans. Amer. Math. Soc. 355 (2003), 2973-2989.10.1090/S0002-9947-03-03257-4Search in Google Scholar

[9] DE FIGUEIREDO, D. G.-DING, Y. H.: Periodic Hamiltonian elliptic systems in unbounded domains: superquadratic and asymptotically quadratic. Preprint.Search in Google Scholar

[10] DE FIGUEIREDO, D. G.-YANG, J. F.: Decay, symmetry and existence of solutions of semilinear elliptic systems, Nonlinear Anal. 33 (1998), 211-234.10.1016/S0362-546X(97)00548-8Search in Google Scholar

[11] LIONS, P. L.: The concentration-compactness principle in the calculus of variations. The locally compact cases, part 1; part 2, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109-145; 223-283.10.1016/s0294-1449(16)30428-0Search in Google Scholar

[12] PANKOV, A.: Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math. 73 (2005), 259-287.10.1007/s00032-005-0047-8Search in Google Scholar

[13] SZULKIN, A.-ZOU, W.: Homoclinic orbits for asymptotically linear Hamiltonian systems, J. Funct. Anal. 187 (2001), 25-41.10.1006/jfan.2001.3798Search in Google Scholar

[14] SIRAKOV, B.-SOARES, S.: Soliton solutions to systems of coupled Schrödinger equations of Hamiltonian type. Preprint.Search in Google Scholar

[15] ALVES, C. O.-CARRIĀO, P.-MIYAGAKI, O.: On the existence of positive solutions of a perturbed Hamiltonian system in RN, J. Math. Anal. Appl. 276 (2002), 673-690.10.1016/S0022-247X(02)00413-4Search in Google Scholar

[16] SZULKIN, A.-WETH, T.: Ground state solutions for some indefinite problems, J. Funct. Anal. 257 (2009), 3802-3822.10.1016/j.jfa.2009.09.013Search in Google Scholar

[17] SCHECHTER, M.-ZOU, W.: Weak linking theorems and Schrödinger equations with critical Sobolev exponent, ESAIM Control Optim. Calc. Var. 9 (2003), 601-619.10.1051/cocv:2003029Search in Google Scholar

[18] STRUWE, M.: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 2000.Search in Google Scholar

[19] DING, Y. H.: Variational Methods for Strongly Indefinite Problems. Interdiscip. Math. Sci. 7, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.10.1142/6565Search in Google Scholar

[20] WILLEM, M.: Minimax Theorems, Birkh¨auser, Basel, 1996.10.1007/978-1-4612-4146-1Search in Google Scholar

[21] MURRAY, J. D.: Mathematical Biology (3rd ed.), Springer Verlag, Heidelberg, 2002.Search in Google Scholar

[22] COSTA, D. G.-MAGALHAES, C. A.: A unified approach to strongly indefinite functionals, J. Differential Equations 122 (1996), 521-547.10.1006/jdeq.1996.0039Search in Google Scholar

[23] CLEMENT, PH.-FIGUEREIDO, D. G.-Mitidieri, E.: Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations 17 (1992), 923-940.10.1080/03605309208820869Search in Google Scholar

[24] RAMOS, M.-YANG, J. F.: Spike-layered solutions for an elliptic system with Neumann boundary conditions, Trans. Amer. Math. Soc. 357 (2005), 3265-3284.10.1090/S0002-9947-04-03659-1Search in Google Scholar

[25] RAMOS, M.-TAVARES, H.: Solutions with multiple spike patterns for an elliptic system, Calc. Var. Partial Differential Equations 31 (2008), 1-25.10.1007/s00526-007-0103-zSearch in Google Scholar

[26] PIATOIA, A.-RAMOS, M.: Locating the peaks of the least energy solutions to an elliptic system with Neumann boundary conditions, J. Differential Equations 201 (2004), 160-176.10.1016/j.jde.2004.02.003Search in Google Scholar

[27] ZHAO, F. K.-ZHAO, L. G.-DING, Y. H.: Multiple solutions for asymptotically linear elliptic systems, NoDEA Nonlinear Differential Equations Appl. 15 (2008), 673-688.10.1007/s00030-008-7080-6Search in Google Scholar

[28] LI, Y. Q.-WANG, Z. Q.-ZENG, J.: Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006), 829-837.10.1016/j.anihpc.2006.01.003Search in Google Scholar

[29] BARTSCH, T.-DING, Y. H.: Homoclinic solutions of an infinite-dimensional Hamiltonian system, Math. Z. 240 (2002), 289-310.10.1007/s002090100383Search in Google Scholar

[30] REED, M.-SIMON, B.: Methods of Modern Mathematical Physics. Analysis of Operators, No. 4, Academic Press, New York, 1978. Search in Google Scholar

Received: 2011-4-21
Accepted: 2012-9-5
Published Online: 2015-3-25
Published in Print: 2015-2-1

© 2015 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0012/pdf
Scroll to top button