Startseite Impact of psychrometry on the aerosol distribution pattern in human lungs
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Impact of psychrometry on the aerosol distribution pattern in human lungs

  • Alok Dhaundiyal ORCID logo EMAIL logo und Gábor Albrecht
Veröffentlicht/Copyright: 11. März 2025

Abstract

This article investigates the localized air quality of the workplace and its impacts on the stochastic behaviour of aerosol deposition. Related to the same, the dewpoint (DPT), wet bulb (WBT) and dry bulb (DBT) temperatures, vapour pressure, and relative and specific humidities of the air are being tested. The given problem investigates the regional and total deposition of aerosol particles in the extrathoracic (Ex), bronchioles (Br) and alveolar sacs (A) of the subjects working in the bioenergy plant. The oral and nasal (n) pathways were considered for the air to enter the extrathoracic region of the human body. The algorithm based on the Monte-Carlo technique is written on Rust version 1.79.0 to calculate the deposition fraction of aerosol particles in the human lungs. The particle is assumed to have a spherical geometry. Only the diffusion of water vapour onto the surface of aerosol is the limiting factor for the growth of aerosol particles and the surface reaction is omitted. The deposition fraction of smaller-sized particles was seen to be increased with nucleation in the Ex region. Similarly, the change in the dew point of air also favoured the likelihood of deposition of the aerosol particle in the Ex region. As compared to the nasal pathway, the accretion of aerosol particles in the Ex region through the oral pathway declined by 35.12  to 38.33  owing to the growth of the aerosol particles with time.

MSC 2020: 65C05; 65C10; 65C20

Funding statement: This work was the part of “Development and application of a stochastic lung model to investigate the effects of smoking and various respiratory diseases on the absorbed doses and spatial distribution of radon daughter elements (funded by Euratom under agreement No. 900009)”.

Acknowledgements

Support of the HUN-REN Centre for Energy Research is gratefully acknowledged.

References

[1] W. J. Bair, The ICRP human respiratory tract model for radiological protection, Radiation Protection Dosimetry 60 (1995), no. 4, 307–310. 10.1093/oxfordjournals.rpd.a082732Suche in Google Scholar

[2] T. L. Chan, R. M. Schreck and M. Lippmann, Effect of the laryngeal jet on particle deposition in the human trachea and upper bronchial airways, J. Aerosol Sci. 11 (1980), no. 5–6, 447–459. 10.1016/0021-8502(80)90117-2Suche in Google Scholar

[3] X. Chen, Y. Feng, W. Zhong and C. Kleinstreuer, Numerical investigation of the interaction, transport and deposition of multicomponent droplets in a simple mouth-throat model, J. Aerosol Sci. 105 (2017), 108–127. 10.1016/j.jaerosci.2016.12.001Suche in Google Scholar

[4] X. Chen, X. Zhou, X. Xia, X. Xie, P. Lu and Y. Feng, Modeling of the transport, hygroscopic growth, and deposition of multi-component droplets in a simplified airway with realistic thermal boundary conditions, J. Aerosol Sci. 151 (2021), Article ID 105626. 10.1016/j.jaerosci.2020.105626Suche in Google Scholar PubMed PubMed Central

[5] K.-H. Cheng, Y.-S. Cheng, H.-C. Yeh, R. A. Guilmette, S. Q. Simpson, Y.-H. Yang and D. L. Swift, In vivo measurements of nasal airway dimensions and ultrafine aerosol deposition in the human nasal and oral airways, J. Aerosol Sci. 27 (1996), no. 5, 785–801. 10.1016/0021-8502(96)00029-8Suche in Google Scholar

[6] A. Cuevas-Robles, N. Soltani, B. Keshavarzi, J. Youn, A. B. MacDonald and A. Sorooshian, Hygroscopic and chemical properties of aerosol emissions at a major mining facility in Iran: Implications for respiratory deposition, Atmospheric Pollution Res. 12 (2021), no. 3, 292–301. 10.1016/j.apr.2020.12.015Suche in Google Scholar PubMed PubMed Central

[7] M. Feltracco, E. Barbaro, S. Tedeschi, A. Spolaor, C. Turetta, M. Vecchiato, E. Morabito, R. Zangrando, C. Barbante and A. Gambaro, Interannual variability of sugars in Arctic aerosol: Biomass burning and biogenic inputs, Sci. Total Environ. 706 (2020), Article ID 136089. 10.1016/j.scitotenv.2019.136089Suche in Google Scholar PubMed

[8] Y. Feng, C. Kleinstreuer and A. Rostami, Evaporation and condensation of multicomponent electronic cigarette droplets and conventional cigarette smoke particles in an idealized G3-G6 triple bifurcating unit, J. Aerosol Sci. 80 (2015), 58–74. 10.1016/j.jaerosci.2014.11.002Suche in Google Scholar

[9] J. Heyder, J. Gebhart, G. Rudolf, C. F. Schiller and W. Stahlhofen, Deposition of particles in the human respiratory tract in the size range 0.005-15 μm, J. Aerosol Sci. 17 (1986), no. 5, 811–825. 10.1016/0021-8502(86)90035-2Suche in Google Scholar

[10] ICRP, Human respiratory tract model for radiological protection, ICRP publication 66, Ann. ICRP 24 (1994), 1–3. 10.1016/0146-6453(94)90004-3Suche in Google Scholar

[11] D. B. Ingham, Diffusion of aerosols from a stream flowing through a cylindrical tube, J. Aerosol Sci. 6 (1975), no. 2, 125–132. 10.1016/0021-8502(75)90005-1Suche in Google Scholar

[12] J. Joksic, M. Jovasevic Stojanovic, A. Bartonova, M. Radenkovic, K. E. Yttri, S. Matic Besarabic and L. Ignjatovic, Physical and chemical characterization of the particulate matter suspended in aerosols from the urban area of Belgrade, J. Serbian Chem. Soc. 74 (2009), no. 11, 1319–1333. 10.2298/JSC0911319JSuche in Google Scholar

[13] C. S. Kim and D. M. Fisher, Deposition characteristics of aerosol particles in sequentially bifurcating airway models, Aerosol Sci. Technol. 31 1999, no. 2–3, 198–220. 10.1080/027868299304255Suche in Google Scholar

[14] K. H. Kim, E. Kabir and S. Kabir, A review on the human health impact of airborne particulate matter, Environ. Internat. 74 (2015), 136–143. 10.1016/j.envint.2014.10.005Suche in Google Scholar PubMed

[15] C. Kleinstreuer, Z. Zhang and Z. Li, Modeling airflow and particle transport/deposition in pulmonary airways, Respiratory Physiol. Neurobiol. 163 (2008), no. 1–3, 128–138. 10.1016/j.resp.2008.07.002Suche in Google Scholar PubMed

[16] L. Koblinger and W. Hofmann, Analysis of human lung morphometric data for stochastic aerosol deposition calculations, Phys. Med. Biol. 30 (1985), no. 6, 541–556. 10.1088/0031-9155/30/6/004Suche in Google Scholar PubMed

[17] L. Koblinger and W. Hofmann, Monte Carlo modeling of aerosol deposition in human lungs. Part I: Simulation of particle transport in a stochastic lung structure, J. Aerosol Sci. 21 (1990), no. 5, 661–674. 10.1016/0021-8502(90)90121-DSuche in Google Scholar

[18] X. Li, Y. Shang, Y. Yan, L. Yang and J. Tu, Modelling of evaporation of cough droplets in inhomogeneous humidity fields using the multi-component Eulerian–Lagrangian approach, Building Environ. 128 (2018), 68–76. 10.1016/j.buildenv.2017.11.025Suche in Google Scholar PubMed PubMed Central

[19] Y. Lu, Y. Chen, X. Wang, E. Lichtfouse and Y. Wang, Hygroscopic growth and collision studies of atmospheric aerosols across scaled particle sizes, Powder Technol. 433 (2024), Article ID 119258. 10.1016/j.powtec.2023.119258Suche in Google Scholar

[20] K. Mogireddy, V. Devabhaktuni, A. Kumar, P. Aggarwal and P. Bhattacharya, A new approach to simulate characterization of particulate matter employing support vector machines, J. Hazardous Mater. 186 (2011), no. 2–3, 1254–1262. 10.1016/j.jhazmat.2010.11.129Suche in Google Scholar PubMed

[21] A. Ning, J. Shen, B. Zhao, S. Wang, R. Cai, J. Jiang, C. Yan, X. Fu, Y. Zhang, J. Li, D. Ouyang, Y. Sun, A. Saiz-Lopez, J. S. Francisco and X. Zhang, Overlooked significance of iodic acid in new particle formation in the continental atmosphere, Proc. Natl. Acad. Sci. 121 (2024), 10.1073/pnas.2404595121. 10.1073/pnas.2404595121Suche in Google Scholar PubMed PubMed Central

[22] R. F. Phalen, H. C. Yeh, G. M. Schum and O. G. Raabe, Application of an idealized model to morphometry of the mammalian tracheobronchial tree, Anatomical Record 190 (1978), no. 2, 167–176. 10.1002/ar.1091900202Suche in Google Scholar PubMed

[23] L. Pichelstorfer, R. Winkler-Heil, M. Boy and W. Hofmann, Aerosol dynamics simulations of the anatomical variability of e-cigarette particle and vapor deposition in a stochastic lung, J. Aerosol Sci. 158 (2021), Article ID 105706. 10.1016/j.jaerosci.2020.105706Suche in Google Scholar

[24] P. K. Rajaraman, J. Choi, E. A. Hoffman, P. T. O’Shaughnessy, S. Choi, R. Delvadia, A. Babiskin, R. Walenga and C.-L. Lin, Transport and deposition of hygroscopic particles in asthmatic subjects with and without airway narrowing, J. Aerosol Sci. 146 (2020), Article ID 105581. 10.1016/j.jaerosci.2020.105581Suche in Google Scholar PubMed PubMed Central

[25] S. S. Stojić, N. Stanišić, A. Stojić and A. Šoštarić, Single and combined effects of air pollutants on circulatory and respiratory system-related mortality in Belgrade, Serbia J. Toxicology Environ. Health A 79 (2015), no. 1, 17–27. 10.1080/15287394.2015.1101407Suche in Google Scholar PubMed

[26] T. Sugimoto, Monodispersed Systems, Monodispersed Particles (2001), 208–367. 10.1016/B978-044489569-1/50026-9Suche in Google Scholar

[27] E. R. Weibel, Principles and methods of morphometry, Morphometry of the Human Lung, Springer, Berlin (1963), 9–39. 10.1016/B978-1-4832-0076-7.50008-9Suche in Google Scholar

[28] R. Winkler-Heil, L. Pichelstorfer and W. Hofmann, Aerosol dynamics model for the simulation of hygroscopic growth and deposition of inhaled NaCl particles in the human respiratory tract, J. Aerosol Sci. 113 (2017), 212–226. 10.1016/j.jaerosci.2017.08.005Suche in Google Scholar

[29] H. Yeh and G. Schum, Models of human lung airways and their application to inhaled particle deposition, Bull. Math. Biol. 42 (1980), no. 3, 461–480. 10.1016/S0092-8240(80)80060-7Suche in Google Scholar

[30] P. Zamankhan, G. Ahmadi, Z. Wang, P. K. Hopke, Y.-S. Cheng, W. C. Su and D. Leonard, Airflow and deposition of nano-particles in a human nasal cavity, Aerosol Sci. Technol. 40 (2006), no. 6, 463–476. 10.1080/02786820600660903Suche in Google Scholar

[31] C. Zhang, N. Ma, F. Fan, Y. Yang, J. Größ, J. Yan, L. Bu, Y. Wang and A. Wiedensohler, Hygroscopic growth of aerosol particles consisted of oxalic acid and its internal mixture with ammonium sulfate for the relative humidity ranging from 80 % to 99.5 %, Atmospheric Environ. 252 (2021), Article ID 118318. 10.1016/j.atmosenv.2021.118318Suche in Google Scholar

[32] Y. Zhao, X. Wang, Y. Cai, J. Pan, W. Yue, H. Xu and J. Wang, Measurements of atmospheric aerosol hygroscopic growth based on multi-channel Raman–Mie lidar, Atmospheric Environ. 246 (2021), Article ID 118076. 10.1016/j.atmosenv.2020.118076Suche in Google Scholar

Received: 2024-11-14
Revised: 2025-02-09
Accepted: 2025-02-17
Published Online: 2025-03-11
Published in Print: 2025-06-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mcma-2025-2004/html?lang=de
Button zum nach oben scrollen