Startseite On the implementation of multilevel Monte Carlo simulation of the stochastic volatility and interest rate model using multi-GPU clusters
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the implementation of multilevel Monte Carlo simulation of the stochastic volatility and interest rate model using multi-GPU clusters

  • Harold A. Lay EMAIL logo , Zane Colgin , Viktor Reshniak und Abdul Q. M. Khaliq
Veröffentlicht/Copyright: 30. Oktober 2018

Abstract

We explore different methods of solving systems of stochastic differential equations by first implementing the Euler–Maruyama and Milstein methods with a Monte Carlo simulation on a CPU. The performance of the methods is significantly improved through the recently developed antithetic multilevel Monte Carlo estimator, which yields a computation complexity of 𝒪(ϵ-2) root-mean-square error and does so without the approximation of Lévy areas. Further improvements in performance are gained by moving the algorithms to a GPU - first on a single device and then on a multi-GPU cluster. Our GPU implementation of the antithetic multilevel Monte Carlo displays a major speedup in computation when compared with many commonly used approaches in the literature. While our work is focused on the simulation of the stochastic volatility and interest rate model, it is easily extendable to other stochastic systems, and it is of particular interest to those with non-diagonal, non-commutative noise.

MSC 2010: 60G99

References

[1] D. F. Anderson and D. J. Higham, Multilevel Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics, Multiscale Model. Simul. 10 (2012), no. 1, 146–179. 10.1137/110840546Suche in Google Scholar

[2] G. Bakshi, C. Cao and Z. Chen, Empirical performance of alternative option pricing models, J. Finance 52 (1997), no. 5, 2003–2049. 10.1111/j.1540-6261.1997.tb02749.xSuche in Google Scholar

[3] A. Barth and A. Lang, Multilevel Monte Carlo method with applications to stochastic partial differential equations, Int. J. Comput. Math. 89 (2012), no. 18, 2479–2498. 10.1080/00207160.2012.701735Suche in Google Scholar

[4] F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ. 81 (1973), no. 3, 637–654. 10.1086/260062Suche in Google Scholar

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer and K. Skadron, A performance study of general-purpose applications on graphics processors using CUDA, J. Parallel Distrib. Comput. 68 (2008), no. 10, 1370–1380. 10.1016/j.jpdc.2008.05.014Suche in Google Scholar

[6] J. M. C. Clark and R. J. Cameron, The maximum rate of convergence of discrete approximations for stochastic differential equations, Stochastic Differential Systems (Vilnius 1978), Lecture Notes in Control and Inform. Sci. 25, Springer, Berlin (1980), 162–171. 10.1007/BFb0004007Suche in Google Scholar

[7] A. M. Dimits, B. I. Cohen, R. E. Caflisch, M. S. Rosin and L. F. Ricketson, Higher-order time integration of Coulomb collisions in a plasma using Langevin equations, J. Comput. Phys. 242 (2013), 561–580. 10.1016/j.jcp.2013.01.038Suche in Google Scholar

[8] J. G. Gaines and T. J. Lyons, Random generation of stochastic area integrals, SIAM J. Appl. Math. 54 (1994), no. 4, 1132–1146. 10.1137/S0036139992235706Suche in Google Scholar

[9] J. G. Gaines and T. J. Lyons, Variable step size control in the numerical solution of stochastic differential equations, SIAM J. Appl. Math. 57 (1997), no. 5, 1455–1484. 10.1137/S0036139995286515Suche in Google Scholar

[10] M. Giles, Improved multilevel Monte Carlo convergence using the Milstein scheme, Monte Carlo and Quasi-Monte Carlo Methods 2006, Springer, Berlin (2008), 343–358. 10.1007/978-3-540-74496-2_20Suche in Google Scholar

[11] M. B. Giles, Multilevel Monte Carlo path simulation, Oper. Res. 56 (2008), no. 3, 607–617. 10.1287/opre.1070.0496Suche in Google Scholar

[12] M. B. Giles and L. Szpruch, Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation, Ann. Appl. Probab. 24 (2014), no. 4, 1585–1620. 10.1214/13-AAP957Suche in Google Scholar

[13] P. Glasserman, Monte Carlo Methods in Financial Engineering. Stochastic Modelling and Applied Probability, Appl. Math. (New York) 53, Springer, New York, 2004. 10.1007/978-0-387-21617-1Suche in Google Scholar

[14] L. A. Grzelak and C. W. Oosterlee, On the Heston model with stochastic interest rates, SIAM J. Financial Math. 2 (2011), no. 1, 255–286. 10.1137/090756119Suche in Google Scholar

[15] S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financial Stud. 6 (1993), no. 2, 327–343. 10.1093/rfs/6.2.327Suche in Google Scholar

[16] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Appl. Math. (New York) 23, Springer, Berlin, 1992. 10.1007/978-3-662-12616-5Suche in Google Scholar

[17] P. E. Kloeden, E. Platen and I. W. Wright, The approximation of multiple stochastic integrals, Stoch. Anal. Appl. 10 (1992), no. 4, 431–441. 10.1080/07362999208809281Suche in Google Scholar

[18] S. J. A. Malham and A. Wiese, Efficient almost-exact Lévy area sampling, Statist. Probab. Lett. 88 (2014), 50–55. 10.1016/j.spl.2014.01.022Suche in Google Scholar

[19] A. Medvedev and O. Scaillet, Pricing American options under stochastic volatility and stochastic interest rates, J. Financial Econ. 98 (2010), no. 1, 145–159. 10.1016/j.jfineco.2010.03.017Suche in Google Scholar

[20] T. Müller-Gronbach, Strong approximation of systems of stochastic differential equations, Habilitation Thesis, TU Darmstadt, 2002. 10.1214/aoap/1026915620Suche in Google Scholar

[21] L. F. Ricketson, Three improvements to multi-level Monte Carlo simulation of SDE systems, preprint (2013), https://arxiv.org/abs/1309.1922. Suche in Google Scholar

[22] T. Rydén and M. Wiktorsson, On the simulation of iterated Itô integrals, Stochastic Process. Appl. 91 (2001), no. 1, 151–168. 10.1016/S0304-4149(00)00053-3Suche in Google Scholar

[23] M. Wiktorsson, Joint characteristic function and simultaneous simulation of iterated Itô integrals for multiple independent Brownian motions, Ann. Appl. Probab. 11 (2001), no. 2, 470–487. 10.1214/aoap/1015345301Suche in Google Scholar

[24] Y. Xia and M. B. Giles, Multilevel path simulation for jump-diffusion SDEs, Monte Carlo and Quasi-Monte Carlo methods 2010, Springer Proc. Math. Stat. 23, Springer, Heidelberg (2012), 695–708. 10.1007/978-3-642-27440-4_41Suche in Google Scholar

Received: 2018-05-02
Revised: 2018-09-27
Accepted: 2018-10-14
Published Online: 2018-10-30
Published in Print: 2018-12-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mcma-2018-2025/html?lang=de
Button zum nach oben scrollen