Home Sampling from the đť’˘I0 distribution
Article
Licensed
Unlicensed Requires Authentication

Sampling from the đť’˘I0 distribution

  • Debora Chan ORCID logo EMAIL logo , Andrea Rey , Juliana Gambini ORCID logo and Alejandro C. Frery ORCID logo
Published/Copyright: October 16, 2018

Abstract

Synthetic Aperture Radar (SAR) images are widely used in several environmental applications because they provide information which cannot be obtained with other sensors. The đť’˘I0 distribution is an important model for these images because of its flexibility (it provides a suitable way for modeling areas with different degrees of texture, reflectivity and signal-to-noise ratio) and tractability (it is closely related to the Snedekor-F, Pareto Type II, and Gamma distributions). Simulated data are important for devising tools for SAR image processing, analysis and interpretation, among other applications. We compare four ways for sampling data that follow the đť’˘I0 distribution, using several criteria for assessing the quality of the generated data and the consumed processing time. The experiments are performed running codes in four different programming languages. The experimental results indicate that although there is no overall best method in all the considered programming languages, it is possible to make specific recommendations for each one.

MSC 2010: 90-04

References

[1] H. Allende, A. C. Frery, J. Galbiati and L. Pizarro, M-Estimators with asymmetric influence functions: The 𝒢A0 distribution case, J. Stat. Comput. Simul. 76 (2006), no. 11, 941–956. 10.1080/10629360600569154Search in Google Scholar

[2] S. Auer, M. Horning, I. Schmitt and P. Reinartz, Simulation-based interpretation and alignment of high-resolution optical and SAR images, IEEE J. Appl. Earth Observ. Remote Sensing 10 (2017), 4779–4793. 10.1109/JSTARS.2017.2723082Search in Google Scholar

[3] M. Barber, F. Grings, P. Perna, M. Piscitelli, M. Maas, C. Bruscantini, J. Jacobo-Berlles and H. Karszenbaum, Speckle noise and soil heterogeneities as error sources in a Bayesian soil moisture retrieval scheme for SAR data, IEEE J. Appl. Earth Observ. Remote Sensing 5 (2012), no. 3, 942–951. 10.1109/JSTARS.2012.2191266Search in Google Scholar

[4] J. Bezanson, A. Edelman, S. Karpinski and V. Shah, Julia: A Fresh Approach to Numerical Computing, Cornell University Library, New York, 2014. Search in Google Scholar

[5] S. Canale, A. De Santis, D. Iacoviello, F. Pirri and S. Sagratella, Integrating X-SAR images and anthropic factors for fire susceptibility assessment, IEEE International Geoscience and Remote Sensing Symposium, IEEE Press, Piscataway (2011), 818–821. 10.1109/IGARSS.2011.6049256Search in Google Scholar

[6] S. Chen, Y. Li and X. Wang, Crop discrimination based on polarimetric correlation coefficients optimization for PolSAR data, Int. J. Remote Sensing 36 (2015), no. 16, 4233–4249. 10.1080/01431161.2015.1079345Search in Google Scholar

[7] S. W. Chen and M. Sato, Tsunami damage investigation of built-up areas using multitemporal spaceborne full polarimetric SAR images, IEEE Trans. Geosci. Remote Sensing 51 (2013), no. 4, 1985–1997. 10.1109/TGRS.2012.2210050Search in Google Scholar

[8] D. Cozzolino, S. Parrilli, G. Scarpa, G. Poggi and L. Verdoliva, Fast adaptive nonlocal SAR despeckling, IEEE Trans. Geosci. Remote Sensing Lett. 11 (2014), 524–528. 10.1109/LGRS.2013.2271650Search in Google Scholar

[9] F. Dell’Acqua and P. Gamba, Remote sensing and earthquake damage assessment: Experiences, limits, and perspectives, Proc. IEEE 100 (2012), no. 10, 2876–2890. 10.1109/JPROC.2012.2196404Search in Google Scholar

[10] L. Devroye, Non-Uniform Random Variate Generation, Springer, New York, 1986. 10.1007/978-1-4613-8643-8Search in Google Scholar

[11] J. A. Doornik and M. Ooms, Introduction to Ox, Timberlake Consultants Press, London, 2006. Search in Google Scholar

[12] E. M. El-Desouki, K. F. A. Hussien and H. M. El-Hennawy, Electromagnetic simulation for land imaging using fully polarimetric SAR system, 34th National Radio Science Conference, IEEE Press, Piscataway (2017), 132–141. 10.1109/NRSC.2017.7893470Search in Google Scholar

[13] T. Esch, M. Schmidt, M. Breunig, A. Felbier, H. Taubenböck, W. Heldens, C. Riegler, A. Roth and S. Dech, Identification and characterization of urban structures using VHR SAR data, IEEE International on Geoscience and Remote Sensing Symposium (IGARSS), IEEE Press, Piscataway (2011), 1413–1416. 10.1109/IGARSS.2011.6049331Search in Google Scholar

[14] A. Frery, H. Müller, C. Yanasse and S. Sant’Anna, A model for extremely heterogeneous clutter, IEEE Trans. Geosci. Remote Sensing 35 (1997), no. 3, 648–659. 10.1109/36.581981Search in Google Scholar

[15] M. Friedman, The use of ranks to avoid the assumption of normality implicit in the analysis of variance, J. Amer. Statist. Assoc. 32 (1937), no. 200, 675–701. 10.1080/01621459.1937.10503522Search in Google Scholar

[16] J. Gambini, J. Cassetti, M. Lucini and A. Frery, Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sensing 8 (2015), no. 1, 365–375. 10.1109/JSTARS.2014.2346017Search in Google Scholar

[17] J. Gambini, M. Mejail, J. Jacobo-Berlles and A. Frery, Accuracy of local edge detection in speckled imagery, Stat. Comput. 18 (2008), no. 1, 15–26. 10.1007/s11222-007-9034-ySearch in Google Scholar

[18] G. Gao, Statistical modeling of SAR images: A survey, Sensors 10 (2010), no. 1, 775–795. 10.3390/s100100775Search in Google Scholar PubMed PubMed Central

[19] E. Girón, A. C. Frery and F. Cribari-Neto, Nonparametric edge detection in speckled imagery, Math. Comput. Simulation 82 (2012), no. 11, 2182–2198. 10.1016/j.matcom.2012.04.013Search in Google Scholar

[20] L. Gomez, R. Ospina and A. C. Frery, Unassisted quantitative evaluation of despeckling filters, Remote Sensing 9 (2017), 10.3390/rs9040389. 10.3390/rs9040389Search in Google Scholar

[21] P. Guccione, L. Mascolo, G. Nico, A. Pelusi and M. Zonno, SAR image simulation of ocean environment and detection of oil slicks, 10th European Conference on Synthetic Aperture Radar, IEEE Press, Piscataway (2014), 1–4. Search in Google Scholar

[22] M. Kiemer and H. Breit, Eficient evaluation of multichanel SAR data recombination filters, IEEE Trans. Geosci. Remote Sensing 55 (2017), 6277–6286. 10.1109/TGRS.2017.2724918Search in Google Scholar

[23] W. H. Kruskal and W. A. Wallis, Use of ranks in one-criterion variance analysis, J. Amer. Statist. Assoc. 47 (1952), no. 260, 583–621. 10.1080/01621459.1952.10483441Search in Google Scholar

[24] F. Massey, Jr., The Kolmogorov–Smirnov test for goodness of fit, J. Amer. Statist. Assoc. 46 (1951), no. 253, 68–78. 10.1080/01621459.1951.10500769Search in Google Scholar

[25] M. Mejail, J. C. Jacobo-Berlles, A. C. Frery and O. H. Bustos, Classification of SAR images using a general and tractable multiplicative model, Int. J. Remote Sensing 24 (2003), no. 18, 3565–3582. 10.1080/0143116021000053274Search in Google Scholar

[26] R. T. Melrose, R. T. Kingsford and A. K. Milne, Using radar to detect flooding in arid wetlands and rivers, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE Press, Piscataway (2012), 5242–524. 10.1109/IGARSS.2012.6352427Search in Google Scholar

[27] E. Moschetti, M. G. Palacio, M. Picco, O. H. Bustos and A. C. Frery, On the use of Lee’s protocol for speckle-reducing techniques, Latin Amer. Appl. Res. 36 (2006), no. 2, 115–121. Search in Google Scholar

[28] J. Naranjo-Torres, J. Gambini and A. C. Frery, The geodesic distance between 𝒢I0 models and its application to region discrimination, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sensing 10 (2017), no. 3, 987–997. 10.1109/JSTARS.2017.2647846Search in Google Scholar

[29] A. D. C. Nascimento, R. J. Cintra and A. C. Frery, Hypothesis testing in speckled data with stochastic distances, IEEE Trans. Geosci. Remote Sensing 48 (2010), no. 1, 373–385. 10.1109/TGRS.2009.2025498Search in Google Scholar

[30] A. D. C. Nascimento, M. M. Horta, A. C. Frery and R. J. Cintra, Comparing edge detection methods based on stochastic entropies and distances for PolSAR imagery, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sensing 7 (2014), no. 2, 648–663. 10.1109/JSTARS.2013.2266319Search in Google Scholar

[31] M. Newman, Power laws, Pareto distributions and Zipf’s law, Contemp. Phys. 46 (2005), 323–351. 10.1080/00107510500052444Search in Google Scholar

[32] C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar Images, Artech House, Boston, 1998. Search in Google Scholar

[33] N. Razali and Y. Wah, Power comparisons of Shapiro–Wilk, Kolmogorov–Smirnov, Lilliefors and Anderson–Darling tests, J. Stat. Model. Anal. 2 (2011), no. 1, 21–33. Search in Google Scholar

[34] J. Rojo, Heavy tailed densities, Wiley Interdiscip. Rev. Comput. Statist. 5 (2013), no. 1, 30–40. 10.1002/wics.1236Search in Google Scholar

[35] R. Roy, Comparison of different techniques to generate normal random variables, J. East Central Europe 545 (2002), 5–6. Search in Google Scholar

[36] S. J. S. Sant’Anna, J. C. S. Lacava and D. Fernandes, From Maxwell’s equations to polarimetric SAR images: A simulation approach, Sensors 8 (2008), 7380–7409. 10.3390/s8117380Search in Google Scholar PubMed PubMed Central

[37] M. Sato, S. W. Chen and M. Satake, Polarimetric SAR analysis of tsunami damage following the March 11, 2011 East Japan earthquake, Proc. IEEE 100 (2012), no. 10, 2861–2875. 10.1109/JPROC.2012.2200649Search in Google Scholar

[38] W. B. Silva, C. C. Freitas, S. J. S. Sant’Anna and A. C. Frery, Classification of segments in PolSAR imagery by minimum stochastic distances between Wishart distributions, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sensing 6 (2013), no. 3, 1263–1273. 10.1109/JSTARS.2013.2248132Search in Google Scholar

[39] C. D. Storie, J. Storie and G. Salinas de Salmuni, Urban boundary extraction using 2-component polarimetric SAR decomposition, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE Press, Piscataway (2012), 5741–5744. 10.1109/IGARSS.2012.6352307Search in Google Scholar

[40] L. Torres, S. J. S. Sant’Anna, C. C. Freitas and A. C. Frery, Speckle reduction in polarimetric SAR imagery with stochastic distances and nonlocal means, Pattern Recognit. 47 (2014), 141–157. 10.1016/j.patcog.2013.04.001Search in Google Scholar

[41] D. Velotto, S. Lehner, A. Soloviev and C. Maingot, Analysis of oceanic features from dual-polarization high resolution X-band SAR imagery for oil spill detection purposes, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE Press, Piscataway (2012), 2841–2844. 10.1109/IGARSS.2012.6350840Search in Google Scholar

[42] J. A. Villaseñor-Alva and E. González-Estrada, A bootstrap goodness of fit test for the generalized Pareto distribution, Comput. Statist. Data Anal. 53 (2009), no. 11, 3835–3841. 10.1016/j.csda.2009.04.001Search in Google Scholar

[43] C. Wang, X. Wen and H. Xu, A robust estimator of parameters for 𝒢I0-modeled SAR imagery based on random weighting method, EURASIP J. Adv. Signal Process. 22 (2017), 42–52. 10.1186/s13634-017-0452-5Search in Google Scholar

[44] Q. Wu, R. Chen, H. Sun and Y. Cao, Urban building density detection using high resolution SAR imagery, Joint Urban Remote Sensing Event, IEEE Press, Piscataway (2011), 45–48. 10.1109/JURSE.2011.5764715Search in Google Scholar

[45] Y. Yamaguchi, Disaster monitoring by fully Polarimetric SAR data acquired with ALOS-PALSAR, Proc. IEEE 100 (2012), no. 10, 2851–2860. 10.1109/JPROC.2012.2195469Search in Google Scholar

[46] MathWorks, MatLab, The language of technical computing, The MathWorks, 2019. Search in Google Scholar

[47] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2016. Search in Google Scholar

Received: 2018-06-12
Revised: 2018-09-25
Accepted: 2018-09-27
Published Online: 2018-10-16
Published in Print: 2018-12-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/mcma-2018-2023/html
Scroll to top button